Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20230001
Polímeros: Ciência e Tecnologia
Original Article

Airbrushing of carbon nanotubes on glass fibers for electromagnetic shielding epoxy composites

Willian Rodrigo Schuster; Sérgio Henrique Pezzin; Fernando Humel Lafratta

Downloads: 0
Views: 260

Abstract

Tricomponent epoxy-matrix nanocomposites were prepared by airbrushing multiwalled carbon nanotubes (MWCNT) on glass fiber fabric (GF), aiming to establish a scalable route to produce electromagnetic interference (EMI) materials. The MWCNT deposition on GF by airbrushing was evaluated by scanning electron microscopy (SEM), showing a very reasonable dispersion even at high MWCNT concentrations. Electrical conductivity measurements have shown a maximum of 1.2x10-3 S/cm for GF with 3.4 wt% MWCNT. Electromagnetic shielding response for GF airbrushed with MWCNT and epoxy-matrix nanocomposites were analyzed considering reflection, absorption and transmission mechanisms and have shown an increasing trend as the MWCNT content increases, reaching the best result of 7.6 dB of shielding effectiveness (SE) in X-band spectra for the composite with 3.4 wt% MWCNT. The results showed that the airbrushing process can be a promising and easy route for manufacturing of MWCNT/GF/epoxy nanocomposites.

 

 

Keywords

nanocomposites, epoxy, airbrushing, carbon nanotubes, EMI materials

References

1 Zhao, B., Zhao, C., Li, R., Hamidinejad, S. M., & Park, C. B. (2017). Flexible, ultrathin and high efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composites films. ACS Applied Materials & Interfaces, 9(24), 20873-20884. http://dx.doi.org/10.1021/acsami.7b04935. PMid:28558470.

2 Song, W.-L., Guan, X.-T., Fan, L.-Z., Cao, W.-Q., Wang, C.-Y., Zhao, Q.-L., & Cao, M.-S. (2015). Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(5), 2097-2107. http://dx.doi.org/10.1039/C4TA05939E.

3 Gonzáles, M., Mokry, G., Nicolás, M., Baselga, J., & Pozuelo, J. (2016). Chapter 11 - Carbon Nanotubes Composites as Electromagnetic Shielding Materials in GHz Range. In: M. R. Berber & I. H. Hafez (Eds.), Carbon Nanotubes – current progress of their polymer composites. Croatia: Intech Open.

4 Tong, X. C. (2009). Advanced materials and design for electromagnetic interference shielding. Boca Raton: CRC Press.

5 Park, K.-Y., Lee, S.-E., Kim, C.-G., & Han, J.-H. (2007). Application of MWCNT added glass fabric/epoxy composites to electromagnetic wave shielding enclosures. Composite Structures, 81(3), 401-406. http://dx.doi.org/10.1016/j.compstruct.2006.08.029.

6 Lima, A. C. C. (2005). Fundamentos de telecomunicações: teoria eletromagnética e aplicações. Salvador: P & A Editora e Gráfica LTDA.

7 Hong, Y. K., Lee, C. Y., Jeong, C. K., Lee, D. E., Kim, K., & Joo, J. (2003). Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. The Review of Scientific Instruments, 74(2), 1098-1102. http://dx.doi.org/10.1063/1.1532540.

8 Tao, J.-R., Luo, C.-L., Huang, M.-L., Weng, Y.-X., & Wang, M. (2023). Construction of unique conductive networks in carbon nanotubes/polymer composites via poly(ε-caprolactone) inducing partial aggregation of carbon nanotubes for microwave shielding enhancement. Composites. Part A, Applied Science and Manufacturing, 164, 107304. http://dx.doi.org/10.1016/j.compositesa.2022.107304.

9 Huang, M.-L., Shi, Y.-D., & Wang, M. (2023). A comparative study on nanoparticle network-dependent electrical conductivity, electromagnetic wave shielding effectiveness and rheological properties in multiwall carbon nanotubes filled polymer nanocomposites. Polymer Composites, 44(2), 1188-1200. http://dx.doi.org/10.1002/pc.27163.

10 Yang, D., Tao, J.-R., Yang, Y., He, Q.-M., Weng, Y.-X., Fei, B., & Wang, M. (2022). Effect interfacial size and multiple interface on electromagnetic shielding of silicon rubber/carbon nanotube composites with mixing segregated particles. Composite Structures, 292, 115668. http://dx.doi.org/10.1016/j.compstruct.2022.115668.

11 Sachdev, V. K., Bhattacharya, S., Patel, K., Sharma, S. K., Mehra, N. C., & Tandon, R. P. (2014). Electrical and EMI shielding characterization of multiwalled carbon nanotube/polystyrene composites. Journal of Applied Polymer Science, 131(24), 40201. http://dx.doi.org/10.1002/app.40201.

12 Jia, L.-C., Li, Y.-K., & Yan, D.-X. (2017). Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon, 121, 267-273. http://dx.doi.org/10.1016/j.carbon.2017.05.100.

13 Li, Y., Shang, Y., Li, M., Zhang, X., & He, J. (2022). High electromagnetic shielding effect of carbon nanotubes/waterborne polyurethane composites prepared by “break-adsorption” method. Materials (Basel), 15(18), 6430. http://dx.doi.org/10.3390/ma15186430. PMid:36143743.

14 Lee, O. H., Kim, S.-S., & Lim, Y.-S. (2011). Conduction noise absortion by fiberglass reinforced epoxy composites with carbon nanotubes. Journal of Magnetism and Magnetic Materials, 323(5), 587-591. http://dx.doi.org/10.1016/j.jmmm.2010.10.018.

15 Silva, L. V., Pezzin, S. H., Rezende, M. C., & Amico, S. C. (2016). Glass fiber/carbon nanotubes/epoxy three-component composites as radar absorbing materials. Polymer Composites, 37(8), 2277-2284. http://dx.doi.org/10.1002/pc.23405.

16 Phan, C. H., Jaafar, M., & Koh, Y. H. (2015). Mild functionalization of carbon nanotubes filled epoxy composites: effect on electromagnetic interference shielding effectiveness. Journal of Applied Polymer Science, 132(38), 42557. http://dx.doi.org/10.1002/app.42557.

17 Gao, X., Yang, W., Cheng, L., Ding, Y., Zhan, J., & Tan, J. (2021). Epoxy resin composite containing nanocarbon-coated glass fiber and cloth for electromagnetic interference shielding. Journal of Materials Research and Technology, 13, 1759-1766. http://dx.doi.org/10.1016/j.jmrt.2021.05.062.

18 Yesmin, N., & Chalivendra, V. (2021). Electromagnetic shielding effectiveness of glass fiber/epoxy laminated composites with multi-scale reinforcements. Journal of Composites Science, 5(8), 204. http://dx.doi.org/10.3390/jcs5080204.

19 Gao, C., He, X., Ye, F., Wang, S., & Zhang, G. (2021). Electromagnetic wave absorption and mechanical properties of CNTs@GN@Fe3O4/PU multilayer composite foam. Materials (Basel), 14(23), 7244. http://dx.doi.org/10.3390/ma14237244. PMid:34885399.

20 Zhang, W., Deng, X., Sui, G., & Yang, X. (2019). Improving interfacial and mechanical properties of carbon nanotube-sized carbon fiber/epoxy composites. Carbon, 145, 629-639. http://dx.doi.org/10.1016/j.carbon.2019.01.063.

21 Godara, A., Gorbatikh, L., Kalinka, G., Warrier, A., Rochez, O., Mezzo, L., Luizi, F., Van Vuure, A. W., Lomov, S. V., & Verpoest, I. (2010). Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Composites Science and Nanotechnology, 70(9), 1346-1352. http://dx.doi.org/10.1016/j.compscitech.2010.04.010.

22 Kunrath, K., Kerche, E. F., Rezende, M. C., & Amico, S. C. (2019). Mechanical, electrical, and electromagnetic properties of hybrid graphene/glass fiber/epoxy composite. Polymers & Polymer Composites, 27(5), 262-267. http://dx.doi.org/10.1177/0967391119828559.

23 Hilding, J., Grulke, E. A., Zhang, Z. G., & Lockwood, L. (2003). Dispersion of carbon nanotubes in liquids. Journal of Dispersion Science and Technology, 24(1), 1-41. http://dx.doi.org/10.1081/DIS-120017941.

24 Zhang, B., Asmatulu, R., Soltani, S. A., Le, L. N., & Kumar, S. S. A. (2014). Mechanical and thermal properties of hierarchical composites enhanced by pristine graphene and graphene oxide nanoinclusions. Journal of Applied Polymer Science, 131(19), 40826. http://dx.doi.org/10.1002/app.40826.

25 Hattenhauer, I., Tambosi, P. P., Duarte, C. A., Coelho, L. A. F., Ramos, A., & Pezzin, S. H. (2015). Impact of electric field application during curing on epoxy-carbon nanotube nanocomposite electrical conductivity. Journal of Inorganic and Organometallic Polymers and Materials, 25(4), 627-634. http://dx.doi.org/10.1007/s10904-014-0125-x.

26 Ramos, A., Pezzin, S. H., Farias, H. D., Becker, D., Bello, R. H., & Coelho, L. A. F. (2016). Conductivity analysis of epoxy/carbon nanotubes composites by dipole relaxation and hopping models. Physica B, Condensed Matter, 499, 57-63. http://dx.doi.org/10.1016/j.physb.2016.07.016.

27 Arjmand, M., Mahmoodi, M., Gelves, G. A., Park, S., & Sundararaj, U. (2011). Electrical and electromagnetic interference shielding properties of flow induced oriented carbon nanotubes in polycarbonate. Carbon, 49(11), 3430-3440. http://dx.doi.org/10.1016/j.carbon.2011.04.039.

28 Zhao, T., Hou, C., Zhang, H., Zhu, R., She, S., Wang, J., Li, T., Liu, Z., & Wei, B. (2014). Electromagnetic wave absorbing properties of amorphous carbon nanotubes. Scientific Reports, 4(1), 5619. http://dx.doi.org/10.1038/srep05619. PMid:25007783.

29 Xu, Z., & Hao, H. (2014). Electromagnetic interference shielding effectiveness of aluminum foams with different porosity. Journal of Alloys and Compounds, 617, 207-213. http://dx.doi.org/10.1016/j.jallcom.2014.07.188.

30 Peng, M., & Qin, F. (2021). Clarification of basic concepts for electromagnetic interference shielding effectiveness. Journal of Applied Physics, 130(22), 225108. http://dx.doi.org/10.1063/5.0075019.
 

64f72417a9539552ff522a02 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections