Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20220121
Polímeros: Ciência e Tecnologia
Original Article

Evaluation of potential biomaterials for application in guide bone regeneration from Bacterial Nanocellulose/Hydroxyapatite

Elouise Gaulke; Michele Cristina Formolo Garcia; Bruna Segat; Giannini Pasiznick Apati; Andréa Lima dos Santos Schneider; Ana Paula Testa Pezzin; Karina Cesca; Luismar Marques Porto

Downloads: 0
Views: 560

Abstract

Bacterial nanocellulose (BNC) membranes have interconnected porous nanostructures and excellent biocompatibility. Functionalizing these with calcium phosphate sources and metal ions confers optimized properties to the biomaterial. This study aims to synthesize BNC membranes, functionalize them with copper and magnesium apatites, characterize and evaluate their cytotoxicity and antimicrobial potential. Membranes were synthesized for 8 days in Mannitol Medium. The biocomposite production was by immersion cycles. The biocomposites were characterized by porosity and swelling capacity, Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), antimicrobial properties and cytotoxicity assays. The FTIR and SEM results showed that phosphate groups were incorporated into the BNC. The TGA analysis also indicated the incorporation of the inorganic phase. The membrane functionalization with Cu promoted the antimicrobial properties of the biomaterial. However, functionalization with Mg had a more positive behavior on cell viability, proving to be more suitable for use as an implantable material.

Keywords

apatites, bacterial nanocellulose, biocomposites, osteogenesis

References

1 Pereira, H. F., Cengiz, I. F., Silva, F. S., Reis, R. L., & Oliveira, J. M. (2020). Scaffolds and coatings for bone regeneration. Journal of Materials Science. Materials in Medicine, 31(3), 27. http://dx.doi.org/10.1007/s10856-020-06364-y. PMid:32124052.

2 Zou, L., Zhang, Y., Liu, X., Chen, J., & Zhang, Q. (2019). Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering. Colloids and Surfaces. B, Biointerfaces, 178, 222-229. http://dx.doi.org/10.1016/j.colsurfb.2019.03.004. PMid:30870789.

3 Filippi, M., Born, G., Chaaban, M., & Scherberich, A. (2020). Natural polymeric scaffolds in bone regeneration. Frontiers in Bioengineering and Biotechnology, 8, 474. http://dx.doi.org/10.3389/fbioe.2020.00474. PMid:32509754.

4 Luz, E. P. C. G., Borges, M. F., Andrade, F. K., Rosa, M. F., Infantes-Molina, A., Rodríguez-Castellón, E., & Vieira, R. S. (2018). Strontium delivery systems based on bacterial cellulose and hydroxyapatite for guided bone regeneration. Cellulose, 25(11), 6661-6679. http://dx.doi.org/10.1007/s10570-018-2008-8.

5 Shi, R., Huang, Y. H., Ma, C., Wu, C., & Tian, W. (2019). Current advances for bone regeneration based on tissue engineering strategies. Frontiers of Medicine, 13(2), 160-188. http://dx.doi.org/10.1007/s11684-018-0629-9. PMid:30047029.

6 Ryngajłło, M., Kubiak, K., Jędrzejczak-Krzepkowska, M., Jacek, P., & Bielecki, S. (2019). Comparative genomics of the Komagataeibacter strains: efficient bionanocellulose producers. MicrobiologyOpen, 8(5), e00731. http://dx.doi.org/10.1002/mbo3.731. PMid:30365246.

7 Araújo, I. M. S., Silva, R. R., Pacheco, G., Lustri, W. R., Tercjak, A., Gutierrez, J., Souza, J. R. Jr., Azevedo, F. H. C., Figuêredo, G. S., Vega, M. L., Ribeiro, S. J. L., & Barud, H. S. (2018). Hydrothermal synthesis of bacterial cellulose–copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydrate Polymers, 179, 341-349. http://dx.doi.org/10.1016/j.carbpol.2017.09.081. PMid:29111060.

8 Pang, M., Huang, Y., Meng, F., Zhuang, Y., Liu, H., Du, M., Ma, Q., Wang, Q., Chen, Z., Chen, L., Cai, T., & Cai, Y. (2020). Application of bacterial cellulose in skin and bone tissue engineering. European Polymer Journal, 122, 109365. http://dx.doi.org/10.1016/j.eurpolymj.2019.109365.

9 Maia, M. T., Luz, É. P. C. G., Andrade, F. K., Rosa, M. F., Borges, M. F., Arcanjo, M. R. A., & Vieira, R. S. (2021). Advances in bacterial cellulose/strontium apatite composites for bone applications. Polymer Reviews, 61(4), 736-764. http://dx.doi.org/10.1080/15583724.2021.1896543.

10 Chocholata, P., Kulda, V., & Babuska, V. (2019). Fabrication of scaffolds for bone-tissue regeneration. Materials, 12(4), 568. http://dx.doi.org/10.3390/ma12040568. PMid:30769821.

11 Hidalgo-Robatto, B. M., López-Álvarez, M., Azevedo, A. S., Dorado, J., Serra, J., Azevedo, N. F., & González, P. (2018). Pulsed laser deposition of copper and zinc doped hydroxyapatite coatings for biomedical applications. Surface and Coatings Technology, 333, 168-177. http://dx.doi.org/10.1016/j.surfcoat.2017.11.006.

12 Gopi, D., Shinyjoy, E., & Kavitha, L. (2014). Synthesis and spectral characterization of silver/magnesium co-substituted hydroxyapatite for biomedical applications. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 127, 286-291. http://dx.doi.org/10.1016/j.saa.2014.02.057. PMid:24632237.

13 Xu, T., He, X., Chen, Z., He, L., Lu, M., Ge, J., Weng, J., Mu, Y., & Duan, K. (2019). Effect of magnesium particle fraction on osteoinduction of hydroxyapatite sphere-based scaffolds. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 7(37), 5648-5660. http://dx.doi.org/10.1039/C9TB01162E. PMid:31465084.

14 Predoi, D., Iconaru, S. L., Predoi, M. V., Stan, G. E., & Buton, N. (2019). Synthesis, characterization, and antimicrobial activity of magnesium-doped hydroxyapatite suspensions. Nanomaterials, 9(9), 1295. http://dx.doi.org/10.3390/nano9091295. PMid:31514280.

15 Vranceanu, D. M., Ionescu, I. C., Ungureanu, E., Cojocaru, M. O., Vladescu, A., & Cotrut, C. M. (2020). Magnesium doped hydroxyapatite-based coatings obtained by pulsed galvanostatic electrochemical deposition with adjustable electrochemical behavior. Coatings, 10(8), 727. http://dx.doi.org/10.3390/coatings10080727.

16 Hutchens, S. A., Benson, R. S., Evans, B. R., O’Neill, H. M., & Rawn, C. J. (2006). Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials, 27(26), 4661-4670. http://dx.doi.org/10.1016/j.biomaterials.2006.04.032. PMid:16713623.

17 Zeng, X., & Ruckenstein, E. (1996). Control of pore sizes in macroporous chitosan and chitin membranes. Industrial & Engineering Chemistry Research, 35(11), 4169-4175. http://dx.doi.org/10.1021/ie960270j.

18 Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4_ts), 493-496. http://dx.doi.org/10.1093/ajcp/45.4_ts.493. PMid:5325707.

19 International Organization for Standardization – ISO. (2009). ISO/EN10993-5: biological evaluation of medical devices - part 5: tests for in vitro cytotoxicity. Geneva: ISO.

20 Aguilar, A. E. M., Fagundes, A. P., Macuvele, D. L. P., Cesca, K., Porto, L., Padoin, N., Soares, C., & Riella, H. G. (2021). Green synthesis of nano hydroxyapatite: morphology variation and its effect on cytotoxicity against fibroblast. Materials Letters, 284(Part 2), 129013. http://dx.doi.org/10.1016/j.matlet.2020.129013.

21 Kim, H.-L., Jung, G.-Y., Yoon, J.-H., Han, J.-S., Park, Y.-J., Kim, D.-G., Zhang, M., & Kim, D.-J. (2015). Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Materials Science and Engineering C, 54, 20-25. http://dx.doi.org/10.1016/j.msec.2015.04.033. PMid:26046263.

22 Jin, H.-H., Kim, D.-H., Kim, T.-W., Shin, K.-K., Jung, J. S., Park, H.-C., & Yoon, S.-Y. (2012). In vivo evaluation of porous hydroxyapatite/chitosan–alginate composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 51(5), 1079-1085. http://dx.doi.org/10.1016/j.ijbiomac.2012.08.027. PMid:22959955.

23 Salim, S. A., Loutfy, S. A., El-Fakharany, E. M., Taha, T. H., Hussien, Y., & Kamoun, E. A. (2021). Influence of chitosan and hydroxyapatite incorporation on properties of electrospun PVA/HA nanofibrous mats for bone tissue regeneration: nanofibers optimization and in-vitro assessment. Journal of Drug Delivery Science and Technology, 62, 102417. http://dx.doi.org/10.1016/j.jddst.2021.102417.

24 Lakrat, M., Jodati, H., Mejdoubi, E. M., & Evis, Z. (2023). Synthesis and characterization of pure and Mg, Cu, Ag, and Sr doped calcium-deficient hydroxyapatite from brushite as precursor using the dissolution-precipitation method. Powder Technology, 413, 118026. http://dx.doi.org/10.1016/j.powtec.2022.118026.

25 He, M., Chang, C., Peng, N., & Zhang, L. (2012). Structure and properties of hydroxyapatite/cellulose nanocomposite films. Carbohydrate Polymers, 87(4), 2512-2518. http://dx.doi.org/10.1016/j.carbpol.2011.11.029.

26 An, S.-J., Lee, S.-H., Huh, J.-B., Jeong, S. I., Park, J.-S., Gwon, H.-J., Kang, E.-S., Jeong, C.-M., & Lim, Y.-M. (2017). Preparation and characterization of resorbable bacterial cellulose membranes treated by electron beam irradiation for guided bone regeneration. International Journal of Molecular Sciences, 18(11), 2236. http://dx.doi.org/10.3390/ijms18112236. PMid:29068426.

27 Huang, Y., Wang, J., Yang, F., Shao, Y., Zhang, X., & Dai, K. (2017). Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. Materials Science and Engineering C, 75, 1034-1041. http://dx.doi.org/10.1016/j.msec.2017.02.174. PMid:28415386.

28 Salarian, M., Solati-Hishjin, M., Sara Shafiei, S., Goudarzi, A., Salarian, R., & Nemati, A. (2009). Surfactant-assisted synthesis and characterization of hydroxyapatite nanorods under hydrothermal conditions. Materials Science Poland, 27(4), 961-971. Retrieved in 2023, August 18, from https://materialsscience.pwr.edu.pl/bi/vol27no4/articles/ms_03_2008_204sala.pdf

29 Panda, S., Behera, B. P., Bhutia, S. K., Biswas, C. K., & Paul, S. (2022). Rare transition metal doped hydroxyapatite coating prepared via microwave irradiation improved corrosion resistance, biocompatibility and anti-biofilm property of titanium alloy. Journal of Alloys and Compounds, 918, 165662. http://dx.doi.org/10.1016/j.jallcom.2022.165662.

30 Minatti, T. C. D. S. (2020). Nanocompósito celulose bacteriana e hidroxiapatita para remoção de zinco de efluentes industriais (Master’s dissertation). Universidade Federal de Santa Catarina, Joinville.

31 Huang, Y., Zhang, X., Zhao, R., Mao, H., Yan, Y., & Pang, X. (2015). Antibacterial efficacy, corrosion resistance, and cytotoxicity studies of copper-substituted carbonated hydroxyapatite coating on titanium substrate. Journal of Materials Science, 50(4), 1688-1700. http://dx.doi.org/10.1007/s10853-014-8730-1.

32 Favi, P. M., Ospina, S. P., Kachole, M., Gao, M., Atehortua, L., & Webster, T. J. (2016). Preparation and characterization of biodegradable nano hydroxyapatite–bacterial cellulose composites with well-defined honeycomb pore arrays for bone tissue engineering applications. Cellulose, 23(2), 1263-1282. http://dx.doi.org/10.1007/s10570-016-0867-4.

33 Wan, Y., Zuo, G., Yu, F., Huang, Y., Ren, K., & Luo, H. (2011). Preparation and mineralization of three-dimensional carbon nanofibers from bacterial cellulose as potential scaffolds for bone tissue engineering. Surface and Coatings Technology, 205(8-9), 2938-2946. http://dx.doi.org/10.1016/j.surfcoat.2010.11.006.

34 Lima, L. R., Santos, D. B., Santos, M. V., Barud, H. S., Henrique, M. A., Pasquini, D., Pecoraro, E., & Ribeiro, S. J. L. (2015). Nanocristais de celulose a partir de celulose bacteriana. Química Nova, 38(9), 1140-1147. http://dx.doi.org/10.5935/0100-4042.20150131.

35 Tõnsuaadu, K., Gross, K. A., Pluduma, L., & Veiderma, M. (2012). A review on the thermal stability of calcium apatites. Journal of Thermal Analysis and Calorimetry, 110(2), 647-659. http://dx.doi.org/10.1007/s10973-011-1877-y.

36 Saska, S., Barud, H. S., Gaspar, A. M. M., Marchetto, R., Ribeiro, S. J. L., & Messaddeq, Y. (2011). Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. International Journal of Biomaterials, 2011, 175362. http://dx.doi.org/10.1155/2011/175362. PMid:21961004.

37 Robbins, M., Pisupati, V., Azzarelli, R., Nehme, S. I., Barker, R. A., Fruk, L., & Schierle, G. S. K. (2021). Biofunctionalised bacterial cellulose scaffold supports the patterning and expansion of human embryonic stem cell-derived dopaminergic progenitor cells. Stem Cell Research & Therapy, 12(1), 574. http://dx.doi.org/10.1186/s13287-021-02639-5. PMid:34774094.

38 Rabelo, J. S. No. (2015). Efeitos da substituição iônica por estrôncio na morfologia de cristais de fosfatos de cálcio e no polimorfismo da hidroxiapatita hexagonal e monoclínica (Doctoral thesis). Universidade Federal de Santa Catarina, Florianópolis.

39 Demishtein, K., Reifen, R., & Shemesh, M. (2019). Antimicrobial properties of magnesium open opportunities to develop healthier food. Nutrients, 11(10), 2363. http://dx.doi.org/10.3390/nu11102363. PMid:31623397.

40 Lima, I. R., Alves, G. G., Soriano, C. A., Campaneli, A. P., Gasparoto, T. H., Ramos, E. S. Jr., Sena, L. Á., Rossi, A. M., & Granjeiro, J. M. (2011). Understanding the impact of divalent cation substitution on hydroxyapatite: an in vitro multiparametric study on biocompatibility. Journal of Biomedical Materials Research. Part A, 98A(3), 351-358. http://dx.doi.org/10.1002/jbm.a.33126. PMid:21626666.

41 Lin, B., Zhong, M., Zheng, C., Cao, L., Wang, D., Wang, L., Liang, J., & Cao, B. (2015). Preparation and characterization of dopamine-induced biomimetic hydroxyapatite coatings on the AZ31 magnesium alloy. Surface and Coatings Technology, 281, 82-88. http://dx.doi.org/10.1016/j.surfcoat.2015.09.033.
 

657b0b8aa953955f6e4dd0c3 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections