Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20220110
Polímeros: Ciência e Tecnologia
Original Article

Thermodynamics of the polymerisation of polyglycerols in an acidic and micellar environment

Vadilson Malaquias dos Santos; Fabricio Uliana; Rayanne Penha Wandenkolken Lima; Eloi Alves da Silva Filho

Downloads: 2
Views: 563

Abstract

This work consisted of studying polyglycerols in an acidic and micellar environment. The effects on surface tension, micellisation, and the Gibbs free energy of interface liquid-liquid (w/o) for directing the etherification of monomer glycerol with n-hexanol, n-octanol, n-decanol, n-dodecanol, and micellar solutions of sodium dodecylsulfate and dodecylbenzenesulfonic acid were studied at 70, 90 and 130°C . Polyglycerols with low weights and prepolymers were obtained. Theoretical methods such as density functional theory and molecular dynamics simulations were used to examine the effects of surface tension, the conformations of glycerol, and the position of the hydroxyl group of alcohols. A theoretical analysis (DFT/B3LYP) of the potential energy surface of glycerol and alcohols allowed finding stable conformations of the molecule, differing in the relative arrangement of hydroxyl groups. Our results helped achieve a better understanding of the interaction complex process of surfactant/catalyst of glycerol reactions in biphasic systems.

 

 

Keywords

hydroxyl groups, liquid systems, surfactants

References

1 Pouyan, P., Cherri, M., & Haag, R. (2022). Polyglycerols as multi-functional platforms: synthesis and biomedical applications. Polymers, 14(13), 2684. http://dx.doi.org/10.3390/polym14132684. PMid:35808728.

2 Kuhn, R., Bryant, I. M., Jensch, R., & Böllmann, J. (2022). Applications of environmental nanotechnologies in remediation, wastewater treatment, drinking water treatment, and agriculture. Applied Nanoscience, 3(1), 54-90. http://dx.doi.org/10.3390/applnano3010005.

3 Goyal, S., Hernández, N. B., & Cochran, E. W. (2021). An update on the future prospects of glycerol polymers. Polymer International, 70(7), 911-917. http://dx.doi.org/10.1002/pi.6209.

4 Ebadipour, N., Paul, S., Katryniok, B., & Dumeignil, F. (2020). Alkaline-based catalysts for glycerol polymerization reaction: a review. Catalysts, 10(9), 1021. http://dx.doi.org/10.3390/catal10091021.

5 Liu, Y., Huang, K., Zhou, Y., Gou, D., & Shi, H. (2021). Hydrogen bonding and the structural properties of glycerol-water mixtures with a microwave field: a molecular dynamics study. The Journal of Physical Chemistry B, 125(29), 8099-8106. http://dx.doi.org/10.1021/acs.jpcb.1c03232. PMid:34264668.

6 Shi, H., Fan, Z., Ponsinet, V., Sellier, R., Liu, H., Pera-Titus, M., & Clacens, J.-M. (2015). Glycerol/dodecanol double Pickering emulsions stabilized by polystyrene-grafted silica nanoparticles for interfacial catalysis. ChemCatChem, 7(20), 3229-3233. http://dx.doi.org/10.1002/cctc.201500556.

7 Alashek, F., Keshe, M., & Alhassan, G. (2022). Preparation of glycerol derivatives by entered of glycerol in different chemical organic reactions: a review. Results in Chemistry, 4, 100359. http://dx.doi.org/10.1016/j.rechem.2022.100359.

8 Piradashvili, K., Alexandrino, E. M., Wurm, F. R., & Landfester, K. (2016). Reactions and polymerizations at the liquid-liquid interface. Chemical Reviews, 116(4), 2141-2169. http://dx.doi.org/10.1021/acs.chemrev.5b00567. PMid:26708780.

9 Amarasekara, A. S., Ali, S. R., Fernando, H., Sena, V., & Timofeeva, T. V. (2019). A comparison of homogeneous and heterogeneous Brønsted acid catalysts in the reactions of meso-erythritol with aldehyde/ketones. SN Applied Sciences, 1(3), 212. http://dx.doi.org/10.1007/s42452-019-0226-9.

10 Li, X., Wu, L., Tang, Q., & Dong, J. (2017). Solvent-free acetalization of glycerol with n-octanal using combined Brønsted acid-surfactant catalyst. Tenside, Surfactants, Detergents, 54(1), 54-63. http://dx.doi.org/10.3139/113.110480.

11 Toth, A., Schnedl, S., Painer, D., Siebenhofer, M., & Lux, S. (2019). Interfacial catalysis in biphasic carboxylic acid esterification with a nickel-based metallosurfactant. ACS Sustainable Chemistry & Engineering, 7(22), 18547-18553. http://dx.doi.org/10.1021/acssuschemeng.9b04667.

12 Kralchevsky, P. A., Danov, K. D., Kolev, V. L., Broze, G., & Mehreteab, A. (2003). Effect of nonionic admixtures on the adsorption of ionic surfactants at fluid interfaces. 1. Sodium dodecyl sulfate and dodecanol. Langmuir, 19(12), 5004-5018. http://dx.doi.org/10.1021/la0268496.

13 Burlatsky, S. F., Atrazhev, V. V., Dmitriev, D. V., Sultanov, V. I., Timokhina, E. N., Ugolkova, E. A., Tulyani, S., & Vincitore, A. (2013). Surface tension model for surfactant solutions at the critical micelle concentration. Journal of Colloid and Interface Science, 393, 151-160. http://dx.doi.org/10.1016/j.jcis.2012.10.020. PMid:23153677.

14 Dong, W. (2021). Thermodynamics of interfaces extended to nanoscales by introducing integral and differential surface tensions. Proceedings of the National Academy of Sciences of the United States of America, 118(3), e2019873118. http://dx.doi.org/10.1073/pnas.2019873118. PMid:33452136.

15 Kirkwood, J. G., & Buff, F. P. (1949). The statistical mechanical theory of surface tension. The Journal of Chemical Physics, 17(3), 338-343. http://dx.doi.org/10.1063/1.1747248.

16 Pera-Titus, M., Leclercq, L., Clacens, J.-M., De Campo, F., & Nardello-Rataj, V. (2015). Pickering interfacial catalysis for biphasic systems: from emulsion design to green reactions. Angewandte Chemie International Edition in English, 54(7), 2006-2021. http://dx.doi.org/10.1002/anie.201402069. PMid:25644631.

17 Gang, L., Xinzong, L., & Eli, W. (2007). Solvent-free esterification catalyzed by surfactant-combined catalysts at room temperature. New Journal of Chemistry, 31(3), 348. http://dx.doi.org/10.1039/b615448d.

18 Pocheć, M., Krupka, K. M., Panek, J. J., Orzechowski, K., & Jezierska, A. (2022). Intermolecular interactions and spectroscopic signatures of the hydrogen-bonded system-n-octanol in experimental and theoretical studies. Molecules (Basel, Switzerland), 27(4), 1225. http://dx.doi.org/10.3390/molecules27041225. PMid:35209010.

19 Jindal, A., & Vasudevan, S. (2020). Hydrogen bonding in the liquid state of linear alcohols: molecular dynamics and thermodynamics. The Journal of Physical Chemistry B, 124(17), 3548-3555. http://dx.doi.org/10.1021/acs.jpcb.0c01199. PMid:32242419.

20 Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. http://dx.doi.org/10.1186/1758-2946-4-17. PMid:22889332.

21 Stewart, J. J. P. (1990). MOPAC: a semiempirical molecular orbital program. Journal of Computer-Aided Molecular Design, 4(1), 1-105. http://dx.doi.org/10.1007/BF00128336. PMid:2197373.

22 Neese, F., Wennmohs, F., Becker, U., & Riplinger, C. (2020). The ORCA quantum chemistry program package. The Journal of Chemical Physics, 152(22), 224108. http://dx.doi.org/10.1063/5.0004608. PMid:32534543.

23 Dodda, L. S., Vaca, I. C., Tirado-Rives, J., & Jorgensen, W. L. (2017). LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Research, 45(W1), W331-W336. http://dx.doi.org/10.1093/nar/gkx312. PMid:28444340.

24 Silva, A. W. S., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 367. http://dx.doi.org/10.1186/1756-0500-5-367. PMid:22824207.

25 Martínez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: a package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13), 2157-2164. http://dx.doi.org/10.1002/jcc.21224. PMid:19229944.

26 Vassetti, D., Pagliai, M., & Procacci, P. (2019). Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules. Journal of Chemical Theory and Computation, 15(3), 1983-1995. http://dx.doi.org/10.1021/acs.jctc.8b01039. PMid:30694667.

27 Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701-1718. http://dx.doi.org/10.1002/jcc.20291. PMid:16211538.

28 Valadbeigi, Y., & Farrokhpour, H. (2013). DFT study on the different oligomers of glycerol (n=1-4) in gas and aqueous phases. Journal of the Korean Chemical Society, 57(6), 684-690. http://dx.doi.org/10.5012/jkcs.2013.57.6.684.

29 Gaudin, P., Jacquot, R., Marion, P., Pouilloux, Y., & Jérôme, F. (2011). Acid-catalyzed etherification of glycerol with long-alkyl-chain alcohols. ChemSusChem, 4(6), 719-722. http://dx.doi.org/10.1002/cssc.201100129. PMid:21591271.

30 Fan, Z., Zhao, Y., Preda, F., Clacens, J.-M., Shi, H., Wang, L., Feng, X., & De Campo, F. (2015). Preparation of bio-based surfactants from glycerol and dodecanol by direct etherification. Green Chemistry, 17(2), 882-892. http://dx.doi.org/10.1039/C4GC00818A.

31 Qian, J., Xu, J., & Zhang, J. (2011). SDS-catalyzed esterification process to synthesize ethyl chloroacetate. Petroleum Science and Technology, 29(5), 462-467. http://dx.doi.org/10.1080/10916461003610405.

32 Sivaiah, M. V., Robles-Manuel, S., Valange, S., & Barrault, J. (2012). Recent developments in acid and base-catalyzed etherification of glycerol to polyglycerols. Catalysis Today, 198(1), 305-313. http://dx.doi.org/10.1016/j.cattod.2012.04.073.

33 Szela̧g, H., & Sadecka, E. (2009). Influence of sodium dodecyl sulfate presence on esterification of propylene glycol with lauric acid. Industrial & Engineering Chemistry Research, 48(18), 8313-8319. http://dx.doi.org/10.1021/ie8019449.

34 Kirby, F., Nieuwelink, A.-E., Kuipers, B. W. M., Kaiser, A., Bruijnincx, P. C. A., & Weckhuysen, B. M. (2015). CaO as drop-in colloidal catalysts for the synthesis of higher polyglycerols. Chemistry (Weinheim an der Bergstrasse, Germany), 21(13), 5101-5109. http://dx.doi.org/10.1002/chem.201405906. PMid:25684403.

35 Al-Soufi, W., & Novo, M. (2021). A surfactant concentration model for the systematic determination of the critical micellar concentration and the transition width. Molecules (Basel, Switzerland), 26(17), 5339. http://dx.doi.org/10.3390/molecules26175339. PMid:34500770.

36 Shah, S. S., Jamroz, N. U., & Sharif, Q. M. (2001). Micellization parameters and electrostatic interactions in micellar solution of sodium dodecyl sulfate (SDS) at different temperatures. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 178(1-3), 199-206. http://dx.doi.org/10.1016/S0927-7757(00)00697-X.

37 El-Dossoki, F. I., Gomaa, E. A., & Hamza, O. K. (2019). Solvation thermodynamic parameters for sodium dodecyl sulfate (SDS) and sodium lauryl ether sulfate (SLES) surfactants in aqueous and alcoholic-aqueous solvents. SN Applied Sciences, 1(8), 933. http://dx.doi.org/10.1007/s42452-019-0974-6.

38 Zana, R. (1995). Aqueous surfactant-alcohol systems: a review. Advances in Colloid and Interface Science, 57, 1-64. http://dx.doi.org/10.1016/0001-8686(95)00235-I.

39 Nguyen, K. T., & Nguyen, A. V. (2019). New evidence of head-to-tail complex formation of SDS-DOH mixtures adsorbed at the air-water interface as revealed by vibrational sum frequency generation spectroscopy and isotope labelling. Langmuir, 35(14), 4825-4833. http://dx.doi.org/10.1021/acs.langmuir.8b04213. PMid:30866624.

40 Chelli, R., Gervasio, F. L., Gellini, C., Procacci, P., Cardini, G., & Schettino, V. (2000). Density functional calculation of structural and vibrational properties of glycerol. The Journal of Physical Chemistry A, 104(22), 5351-5357. http://dx.doi.org/10.1021/jp0000883.

41 Vargas, R., Garza, J., & Cedillo, A. (2005). Koopmans-like approximation in the Kohn-Sham method and the impact of the frozen core approximation on the computation of the reactivity parameters of the density functional theory. The Journal of Physical Chemistry A, 109(39), 8880-8892. http://dx.doi.org/10.1021/jp052111w. PMid:16834292.

42 Yu, J., Su, N. Q., & Yang, W. (2022). Describing chemical reactivity with frontier molecular orbitalets. JACS Au, 2(6), 1383-1394. http://dx.doi.org/10.1021/jacsau.2c00085. PMid:35783161.
 

660c45d0a9539579d533aaa2 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections