Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20220013
Polímeros: Ciência e Tecnologia
Original Article

Polymer composite produced with Brazil nut residues and high impact polystyrene

Jefferson Renan Santos da Silva; João Christian Paixão Fonseca; Thais da Silva Santos; Josiel Bruno de Oliveira; Thiago Monteiro Maquiné; Bruno Mello de Freitas; Raimundo Nonato Alves Silva; Nayra Reis do Nascimento; João Martins da Costa; Roger Hoel Bello; José Costa de Macedo Neto

Downloads: 0
Views: 664

Abstract

Solid residues from agroindustry often accumulate and cause environmental imbalance. An alternative to this is to use this residue as a reinforcement in polymers. The achievement of this work was to characterize a composite with a polystyrene matrix reinforced with Brazil nut shells residues. The residues were cleaned and ground to then produce the samples via injection molding with the proportions of 0%, 2.5% and 5% of load. The specimens were characterized using mechanical tensile testing and thermogravimetric analysis (TGA). The mechanical test showed that the composite with 2.5% of filler had greater stiffness and strength was improved by 5%. Thermal analysis showed an increase in the temperature for the beginning of the degradation of the M2.5 composite. The results confirm a potential application in the automotive industry for the polystyrene composite reinforced with Brazil nut shells.

 

 

Keywords

residues, polystyrene, HIPS, characterization

References

1 Nogueira, I. M. S., Lahr, F. A. R., & Giacon, V. M. (2018). Development and characterization of particleboards manufactured with the residue of Brazilian nut fruit and castor oil polyurethane resin. Revista Matéria, 23(1), 1-11.

2 Souza, T. A. Fo., Pedroso, E. A., & Paes-de-Souza, M. (2011). Produtos Florestais Não-Madeiráveis (PFNMs) da Amazônia: uma visão autóctone da cadeia-rede da castanha-da-amazônia no estado de Rondônia. Revista de Administração e Negócios da Amazônia, 3(2), 58-74.

3 Instituto Brasileiro de Geografia e Estatística - IBGE. (2020). Extração vegetal e silvicultura. Retrieved in 2022, December 02, from https://cidades.ibge.gov.br/brasil/am/pesquisa/16/0?tipo=ranking&indicador=12716

4 Bouvie, L., Bortella, D. R., Porto, P. A. O., Silva, A. C., & Leonel, S. (2016). Physico-chemical characterization of fruit’s castanheira of Brazil. Nativa, 4(2), 107-111. http://dx.doi.org/10.14583/2318-7670.v04n02a10.

5 Mansor, M. R., Mastura, M. T., Sapuan, S. M., & Zainudin, A. Z. (2019). The environmental impact of natural fiber composites through life cycle assessment analysis. In M. Jawaid, M. Thariq & N. Saba (Eds.), Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites (pp. 257-285). Duxford: Woodhead Publishing. http://dx.doi.org/10.1016/B978-0-08-102290-0.00011-8.

6 Brasil. Lei n. 12.305, de 2 de agosto de 2010. (2010, 2 de agosto). Institui a Política Nacional de Resíduos Sólidos; altera a Lei nº 9.605, de 12 de fevereiro de 1998; e dá outras providências. Diário Oficial da República Federativa do Brasil, Brasília.

7 Borsoi, C., Scienza, L. C., Zattera, A. J., & Angrizani, C. C. (2011). Obtainment and characterization of composites using polystyrene as matrix and fiber waste from cotton textile industry as reinforcement. Polímeros: Ciência e Tecnologia, 21(4), 271-279. http://dx.doi.org/10.1590/S0104-14282011005000055.

8 Enríquez‑Medrano, F. J., Acuña, P., & Morales, G. (2020). Synthesis strategies in the preparation of high impact polystyrene with diferent type of particles as the dispersed phase, towards a balance between impact strength and gloss. Brazilian Journal of Chemical Engineering, 37(4), 715-727. http://dx.doi.org/10.1007/s43153-020-00040-y.

9 INNOVA. (2021, May 30). Retrieved in 2022, December 02, from https://www.innova.com.br/wp-content/uploads/2022/12/HIPS.pdf

10 Vianna, W. L., Correa, C. A., & Razzino, C. A. (2004). The effects of the high impact polystyrene morphology on the properties of wood-plastic composites. Polímeros: Ciência e Tecnologia, 14(5), 339-348. http://dx.doi.org/10.1590/S0104-14282004000500012.

11 Petrechen, G. P., & Ambrósio, J. D. (2016). Preparation and mechanics characterization of lignocellulosic residues of Brazil nut (bertholletia excelsa) seed husks reinforced polypropylene composites. In 22º CBECiMat - Congresso Brasileiro de Engenharia e Ciência dos Materiais (pp. 2739-2749). São Paulo: Metallum Congressos Técnicos e Científicos.

12 Zafar, F. M., & Siddiqui, M. A. (2018). Raw natural fiber reinforced polystyrene composites: effect of fiber size and loading. Materials Today: Proceedings, 5(2), 5908-5917. http://dx.doi.org/10.1016/j.matpr.2017.12.190.

13 Siregar, J. P., Sapuan, S. M., Rahman, M. Z. A., & Zaman, H. M. D. K. (2009). The effect of compatibilising agent and surface modification on the physical properties of short Pineapple Leaf Fibre (PALF) reinforced High Impact Polystyrene (HIPS) composites. Polymers & Polymer Composites, 17(6), 379-384. http://dx.doi.org/10.1177/096739110901700606.

14 Saber, E., El-Sayed, N. S., Nagiebb, Z. A., Ismail, A., & Kamel, S. (2017). Characterization of plastic composite based on HIPS loaded with bagasse. Egyptian Journal of Chemistry, 60(6), 1101-1110.

15 Kieling, A. C., Santana, G. P., Santos, M. C., Macedo, J. C. No., Pino, G. G., Santos, M. D., Duvoisin, S. Jr., & Panzera, T. H. (2021). Wood-plastic composite based on recycled polypropylene and Amazonian tucumã (Astrocaryum aculeatum) endocarp waste. Fibers and Polymers, 22(10), 2834-2845. http://dx.doi.org/10.1007/s12221-021-0421-3.

16 AZO Materials. (2001). High Impact Polystyrene - HIPS. Retrieved in 2022, December 02, from https://www.azom.com/article.aspx?ArticleID=424

17 Vieira, D. S., & Coelho, N. A. (2020). Utilização do método dos elementos finitos no estudotérmico de elementos simples de concreto. Revista de Ciencia y Tecnología, 6, 1-16.

18 Pawlak, Z., & Pawlak, A. S. (1997). A review of infrared spectra from wood and wood components following treatment with liquid ammonia and solvated electrons in liquid ammonia. Applied Spectroscopy Reviews, 32(4), 349-383. http://dx.doi.org/10.1080/05704929708003319.

19 Masood, M. T., Heredia-Guerrero, J. A., Ceseracciu, L., Palazon, F., Athanassiou, A., & Bayer, I. S. (2017). Superhydrophobic high impact polystyrene (HIPS) nanocomposites withwear abrasion resistance. Chemical Engineering Journal, 322, 10-21. http://dx.doi.org/10.1016/j.cej.2017.04.007.

20 Troedec, M., Sedan, D., Peyratout, C., Bonnet, J. P., Smith, A., Guinebretiere, R., Gloaguen, V., & Krausz, P. (2008). Influence of various chemical treatments on the composition and structure of hemp fibres. Composites. Part A, Applied Science and Manufacturing, 39(3), 514-522. http://dx.doi.org/10.1016/j.compositesa.2007.12.001.

21 Rovere, J., Correa, C. A., Grassi, V. G., & Pizzol, M. F. (2008). Caracterização morfológica do poliestireno de alto impacto (HIPS). Polímeros: Ciência e Tecnologia, 18(1), 12-19. http://dx.doi.org/10.1590/S0104-14282008000100007.

22 Tobón, A. E. D., Chaparro, W. A. A., & Rivera, W. G. (2014). Improvement of properties of tension in WPC of LDPE: HIPS/natural fiber through crosslinking with DCP. Polímeros: Ciência e Tecnologia, 24(3), 291-299.

23 D’Almeida, J. R. M. (1987). Propriedades mecânicas de fibras de juta. Ciência e Cultura, 39(4), 1025-1032.

24 Joseph, K., Medeiros, E. S., & Carvalho, L. H. (1999). Tensile properties of unsaturated polyester composites reinforced by short sisal fibers. Polímeros: Ciência e Tecnologia, 9(4), 136-141. http://dx.doi.org/10.1590/S0104-14281999000400023.

25 Medeiros, V. N. (2016). Desenvolvimento de membranas de poliétersulfona por inversão de fases (Doctoral thesis). Universidade Federal de Campina Grande, Campina Grande.

26 Grassi, V. G., Forte, M. M. C., & Pizzol, M. F. (2001). Morphologic aspects and structure-properties relations of high impact polystyrene. Polímeros: Ciência e Tecnologia, 11(3), 158-168. http://dx.doi.org/10.1590/S0104-14282001000300016.

27 Rabelo, M., & Paoli, M.-A. (2013). Aditivação de termoplásticos. São Paulo: Artliber Editora.

28 Maestrini, C., Monti, L., & Kausch, H. H. (1996). Influence of particle-craze interactions on the sub-critical fracture of core-shell HIPS. Polymer, 37(9), 1607-1619. http://dx.doi.org/10.1016/0032-3861(96)83709-8.

29 Argon, A. S. (2011). Craze initiation in glassy polymers - revisited. Polymer, 52(10), 2319-2327. http://dx.doi.org/10.1016/j.polymer.2011.03.019.

30 Ebewele, R. O. (2000). Polymer science and technology. Boca Raton: CRC Press. http://dx.doi.org/10.1201/9781420057805.

31 Zhu, L. D., Yang, H. Y., Cai, G. D., Zhou, C., Wu, G. F., Zhang, M. Y., Gao, G. H., & Zhang, H. X. (2013). Submicrometer-sized rubber particles as “craze-bridge” for toughening polystyrene/high-impact polystyrene. Journal of Applied Polymer Science, 129(1), 224-229. http://dx.doi.org/10.1002/app.38716.

32 Bhilat, H., Hachim, A., Salmi, H., & Had, K. (2020). Experimental and numerical investigation of the influence of temperature on the fracture behavior of high impact polystyrene evaluated by the J-integral approach using multiple specimen method. Journal of Metals, Materials and Minerals, 30(3), 91-100. http://dx.doi.org/10.55713/jmmm.v30i3.763.

33 Şahin, T., Sınmazçelik, T., & Şahin, S. (2007). The effect of natural weathering on the mechanical, morphological and thermal properties of high impact polystyrene (HIPS). Materials & Design, 28(8), 2303-2309. http://dx.doi.org/10.1016/j.matdes.2006.07.013.

34 Hasegawa, H., Ohta, T., Ito, K., & Yokoyama, H. (2017). Stress-strain measurement of ultra-thin polystyrene films: film thickness and molecular weight dependence of crazing stress. Polymer, 123, 179-183. http://dx.doi.org/10.1016/j.polymer.2017.07.018.

35 Capri, M. R., Santana, L. C., & Mulinari, D. R. (2016). Avaliação das propriedades térmicas dos compósitos de polipropileno reforçados com fibras da palmeira. In 22º CBECiMat - Congresso Brasileiro de Engenharia e Ciência dos Materiais. (pp. 1-12). São Paulo: Metallum Congressos Técnicos e Científicos..

36 Machado, C. E. V., Costa, A. C. A., Cardoso, R. C., Caetano, F. P., Lopes, J. A., Cury, A. L., Rodrigues, L. M., & Cabral, R. F. (2017). Study of mechanical and thermal properties of high impact polystyrene. Cadernos UniFOA, 12(35), 15-24. http://dx.doi.org/10.47385/cadunifoa.v12.n35.474.

37 Cordeiro, C. C., Arroyo, P. A., Santos, D. G., Pedrini, C. No., Muniz, E. C., Radovanovic, E., & Rubira, A. F. (2005). Blendas de poliestireno de alto impacto pós consumo com um resíduo plástico gerado em usina de reciclagem. In 8º Congresso Brasileiro de Polímeros - CBPol (pp. 699-700). São Carlos: Associação Brasileira de Polímeros.

38 Agung, E. H., Sapuan, S. M., Ahmad, M. M. H. M., Zaman, H. M. D. K., & Mustofa, U. (2011). Differential scanning calorimetry (DSC) analysis of abaca fibre (Musa textile Nee) reinforced high impact polystyrene (HIPS) composites. In P. Wang, L. Ai, Y. Li, X. Sang & J. Bu (Eds.), Advanced materials research (Vol. 295-297, pp. 929-933). Zurich: Trans Tech Publications, Ltd. http://dx.doi.org/10.4028/www.scientific.net/AMR.295-297.929.

39 Saeed, U., Dawood, U., & Ali, A. M. (2021). Cellulose triacetate fiber-reinforced polystyrene composite. Journal of Thermoplastic Composite Materials, 34(5), 707-721. http://dx.doi.org/10.1177/0892705719847249.

40 Scussel, V. M., Manfio, D., Savi, G. D., & Moecke, E. H. S. (2014). Stereoscopy and scanning electron microscopy of Brazil nut (Bertholletia excelsa H.B.K.) Shell, brown skin, and edible part: part one—healthy nut. Journal of Food Science, 79(7), H1443-H1453. http://dx.doi.org/10.1111/1750-3841.12502. PMid:24974969.

41 Scussel, V. M., Manfio, D., Savi, G. D., & Moecke, E. H. S. (2014). Stereo and scanning electron microscopy of in-shell Brazil nut (Bertholletia excelsa H.B.K.): part two—surface sound nut fungi spoilage susceptibility. Journal of Food Science, 79(11), H2392-H2403. http://dx.doi.org/10.1111/1750-3841.12679. PMid:25318846.

42 Liu, K., Takagi, H., & Yang, Z. M. (2011). Effect of lumen size on transverse thermal conductivity of unidirectional natural fiber-polymer composite via finite element method. Materials Science Forum, 675-677, 431-434. http://dx.doi.org/10.4028/www.scientific.net/MSF.675-677.431.

43 Zach, J., Slávik, R., & Novák, V. (2016). Investigation of the process of heat transfer in the structure of thermal insulation materials based on natural fibres. Procedia Engineering, 151, 352-359. http://dx.doi.org/10.1016/j.proeng.2016.07.389.

44 Ju, L., Yang, J., Hao, A., Daniel, J., Morales, J., Nguyen, S., Andrei, P., Liang, R., Hellstrom, E., & Xu, C. (2018). A hybrid ceramic-polymer composite fabricated by co-curing lay-up process for a strong bonding and enhanced transient thermal protection. Ceramics International, 44(10), 11497-11504. http://dx.doi.org/10.1016/j.ceramint.2018.03.211.

45 Sottos, N. R., & Swindeman, M. (1995). Transient thermal deformations of the interphasein polymer composites. The Journal of Adhesion, 53(1-2), 69-78. http://dx.doi.org/10.1080/00218469508014372.
 

64340fc2a9539550205a4fc6 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections