Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20210116
Polímeros: Ciência e Tecnologia
Original Article

Improving the dispersion of multiwalled carbon nanotube in polypropylene using controlled extensional flowa

Marcel Andrey de Goes; João Paulo Ferreira Santos; Benjamim de Melo Carvalho

Downloads: 0
Views: 629

Abstract

The use of controlled extension flows associated with processing with predominant shear flows can bring gains in the dispersive capacity of nanofillers during the processing of nanocomposites. In this work, we use a controlled flow device coupled to the matrix of a single-screw extruder to process PP matrix composites containing 0.5% and 2.5% (v/v) of MWCNT. The nanocomposites were evaluated by optical microscopy and oscillatory rheological analysis. The clusters size analysis showed that in PP/0.5MWCNT-el, 70.5% of all its clusters were below 1µm2 while its analog processed without the extensional flow showed 59.8% of its clusters below this value. The rheological analysis allowed to verify that the compositions processed with the presence of the extensional flow have their crossover frequencies shifted to lower values, that is, longer relaxation times corroborating that improved degrees of dispersion were achieved.

 

 

Keywords

processing, extensional flow, dispersion, nanocomposites

References

1 Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486-1498. http://dx.doi.org/10.1016/j.compscitech.2008.06.018.

2 Kaseem, M., Hamad, K., & Ko, Y. G. (2016). Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: A review. European Polymer Journal, 79, 36-62. http://dx.doi.org/10.1016/j.eurpolymj.2016.04.011.

3 Ma, P.-C., Siddiqui, N. A., Marom, G., & Kim, J.-K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Composites. Part A, Applied Science and Manufacturing, 41(10), 1345-1367. http://dx.doi.org/10.1016/j.compositesa.2010.07.003.

4 Du, F., Scogna, R. C., Zhou, W., Brand, S., Fischer, J. E., & Winey, K. I. (2004). Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules, 37(24), 9048-9055. http://dx.doi.org/10.1021/ma049164g.

5 Zhu, B., Bai, T., Wang, P., Wang, Y., Liu, C., & Shen, C. (2020). Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability. International Journal of Biological Macromolecules, 153, 1272-1280. http://dx.doi.org/10.1016/j.ijbiomac.2019.10.262. PMid:31758994.

6 Santos, J. P. F., Arjmand, M., Melo, G. H. F., Chizari, K., Bretas, R. E. S., & Sundararaj, U. (2018). Electrical conductivity of electrospun nanofiber mats of polyamide 6/polyaniline coated with nitrogen-doped carbon nanotubes. Materials & Design, 141, 333-341. http://dx.doi.org/10.1016/j.matdes.2017.12.052.

7 Voge, C. M., Johns, J., Raghavan, M., Morris, M. D., & Stegemann, J. P. (2013). Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein-nanotube composite biomaterials. Journal of Biomedical Materials Research. Part A, 101(1), 231-238. http://dx.doi.org/10.1002/jbm.a.34310. PMid:22865813.

8 Vilaverde, C., Santos, R. M., Paiva, M. C., & Covas, J. A. (2015). Dispersion and re-agglomeration of graphite nanoplates in polypropylene melts under controlled flow conditions. Composites. Part A, Applied Science and Manufacturing, 78, 143-151. http://dx.doi.org/10.1016/j.compositesa.2015.08.010.

9 Harris, A. M., & Lee, E. C. (2008). Improving mechanical performance of injection molded PLA by controlling crystallinity. Journal of Applied Polymer Science, 107(4), 2246-2255. http://dx.doi.org/10.1002/app.27261.

10 Feast, W. J., Tsibouklis, J., Pouwer, K. L., Groenendaal, L., & Meijer, E. W. (1996). Synthesis, processing and material properties of conjugated polymers. Polymer, 37(22), 5017-5047. http://dx.doi.org/10.1016/0032-3861(96)00439-9.

11 Tokihisa, M., Yakemoto, K., Sakai, T., Utracki, L. A., Sepehr, M., Li, J., & Simard, Y. (2006). Extensional flow mixer for polymer nanocomposites. Polymer Engineering and Science, 46(8), 1040-1050. http://dx.doi.org/10.1002/pen.20542.

12 Covas, J. A., Novais, R. M., & Paiva, M. C. (2011). A comparative study of the dispersion of carbon nanofibres in polymer melts. In Proceedings of the 27th World Congress of the Polymer Processing Society (pp. 1-5). Morocco: International Polymer Processing.

13 Oxfall, H., Rondin, J., Bouquey, M., Muller, R., Rigdahl, M., & Rychwalski, R. W. (2013). Elongational flow mixing for manufacturing of graphite nanoplatelet/ polystyrene composites. Journal of Applied Polymer Science, 128(5), 2679-2686. http://dx.doi.org/10.1002/app.38439.

14 Pierson, H. O. (1993). Handbook of carbon, graphite, diamond and fullerenes: properties, processing and applications. USA: Noyes Publications.

15 Ibarra-Gómez, R., Muller, R., Bouquey, M., Rondin, J., Serra, C. A., Hassouna, F., Mouedden, Y. E., Toniazzo, V., & Ruch, D. (2015). Processing of nanocomposites PLA/graphite using a novel elongational mixing device. Polymer Engineering and Science, 55(1), 214-222. http://dx.doi.org/10.1002/pen.23869.

16 Chellamuthu, M., Arora, D., Winter, H. H., & Rothstein, J. P. (2011). Extensional flow-induced crystallization of isotactic poly-1-butene using a filament stretching rheometer. Journal of Rheology (New York, N.Y.), 55(4), 901-920. http://dx.doi.org/10.1122/1.3593471.

17 Bischoff White, E. E., Henning Winter, H., & Rothstein, J. P. (2012). Extensional-flow-induced crystallization of isotactic polypropylene. Rheologica Acta, 51(4), 303-314. http://dx.doi.org/10.1007/s00397-011-0595-5.

18 Jamali, S., Paiva, M. C., & Covas, J. A. (2013). Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes. Polymer Testing, 32(4), 701-707. http://dx.doi.org/10.1016/j.polymertesting.2013.03.005.

19 Yuan, D., Wu, T., Chen, R.-Y., Zhang, G.-Z., & Qu, J.-P. (2018). Investigation on properties of polypropylene/multi-walled carbon nanotubes nanocomposites prepared by a novel eccentric rotor extruder based on elongational rheology. Journal of Macromolecular Science, Part B: Physics, 57(5), 348-363. http://dx.doi.org/10.1080/00222348.2018.1462648.

20 Silvano, J. R., Rodrigues, S. A., Marini, J., Bretas, R. E. S., Canevarolo, S. V., Carvalho, B. M., & Pinheiro, L. A. (2013). Effect of reprocessing and clay concentration on the degradation of polypropylene/montmorillonite nanocomposites during twin screw extrusion. Polymer Degradation & Stability, 98(3), 801-808. http://dx.doi.org/10.1016/j.polymdegradstab.2012.12.009.

21 Graf, A., Zakharko, Y., Schießl, S. P., Backes, C., Pfohl, M., Flavel, B. S., & Zaumseil, J. (2016). Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing. Carbon, 105, 593-599. http://dx.doi.org/10.1016/j.carbon.2016.05.002.

22 Duc, B. N., & Son, Y. (2020). Enhanced dispersion of multi walled carbon nanotubes by an extensional batch mixer in polymer/MWCNT nanocomposites. Composites Communications, 21, 100420. http://dx.doi.org/10.1016/j.coco.2020.100420.

23 Carson, S. O., Maia, J. M., & Covas, J. A. (2016). A new extensional mixing element for improved dispersive mixing in twin-screw extrusion, Part 2: experimental validation for immiscible polymer blends. Advances in Polymer Technology, 37(1), 21653. http://dx.doi.org/10.1002/adv.21653.

24 Carson, S. O., Covas, J. A., & Maia, J. M. (2015). A new extensional mixing element for improved dispersive mixing in twin-screw extrusion, Part 1: design and computational validation. Advances in Polymer Technology, 36(4), 21627. http://dx.doi.org/10.1002/adv.21627.

25 Goes, M. A., Woicichowski, L. A., Rosa, R. V. V., Santos, J. P. F., & Carvalho, B. M. (2021). Improving the dispersion of MWCNT and MMT in PVDF melts employing controlled extensional flows. Journal of Applied Polymer Science, 138(17), 50274. http://dx.doi.org/10.1002/app.50274.

26 Feigl, K., Tanner, F. X., Edwards, B. J., & Collier, J. R. (2003). A numerical study of the measurement of elongational viscosity of polymeric fluids in a semihyperbolically converging die. Journal of Non-Newtonian Fluid Mechanics, 115(2–3), 191-215. http://dx.doi.org/10.1016/j.jnnfm.2003.08.002.

27 Beatrice, C. A. G., Branciforti, M. C., Alves, R. M. V., & Bretas, R. E. S. (2010). Rheological, mechanical, optical, and transport properties of blown films of polyamide 6/residual monomer/montmorillonite nanocomposites. Journal of Applied Polymer Science, 116(6), 3581-3592. http://dx.doi.org/10.1002/app.31898.

28 Khajehpour, M., Arjmand, M., & Sundararaj, U. (2016). Dielectric properties of multiwalled carbon nanotube/clay/polyvinylidene fluoride nanocomposites: effect of clay incorporation. Polymer Composites, 37(1), 161-167. http://dx.doi.org/10.1002/pc.23167.

29 Hsissou, R., Bekhta, A., Dagdag, O., El Bachiri, A., Rafik, M., & Elharfi, A. (2020). Rheological properties of composite polymers and hybrid nanocomposites. Heliyon, 6(6), e04187. http://dx.doi.org/10.1016/j.heliyon.2020.e04187. PMid:32566792.

30 Demarquette, N. R., & Carastan, D. J. (2016). Rheological behavior of nanocomposites. In J. Parameswaranpillai, N. Hameed, T. Kurian, & Y. Yu (Eds.), Nanocomposite materials: synthesis, properties and applications (pp. 233-264). USA: CRC Press, Taylor & Francis Group. http://dx.doi.org/10.1201/9781315372310.

31 Behera, K., & Chiu, F. C. (2020). Evident improvements in the rigidity, toughness, and electrical conductivity of PVDF/HDPE blend with selectively localized carbon nanotube. Polymer Testing, 90, 106736. http://dx.doi.org/10.1016/j.polymertesting.2020.106736.

32 Zhang, Q., Fang, F., Zhao, X., Li, Y., Zhu, M., & Chen, D. (2008). Use of dynamic rheological behavior to estimate the dispersion of carbon nanotubes in carbon nanotube/polymer composites. The Journal of Physical Chemistry B, 112(40), 12606-12611. http://dx.doi.org/10.1021/jp802708j. PMid:18785703.

33 Ke, K., Wang, Y., Liu, X.-Q., Cao, J., Luo, Y., Yang, W., Xie, B.-H., & Yang, M.-B. (2012). Composites : part B A comparison of melt and solution mixing on the dispersion of carbon nanotubes in a poly (vinylidene fluoride) matrix. Composites. Part B, Engineering, 43(3), 1425-1432. http://dx.doi.org/10.1016/j.compositesb.2011.09.007.

34 Vermogen, A., Masenelli-Varlot, K., Séguéla, R., Duchet-Rumeau, J., Boucard, S., & Prele, P. (2005). Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites. Macromolecules, 38(23), 9661-9669. http://dx.doi.org/10.1021/ma051249+.

35 Durmus, A., Kasgoz, A., & Macosko, C. W. (2007). Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: structural characterization and quantifying clay dispersion by melt rheology. Polymer, 48(15), 4492-4502. http://dx.doi.org/10.1016/j.polymer.2007.05.074.

36 Franchini, E., Galy, J., & Gérard, J.-F. (2009). Sepiolite-based epoxy nanocomposites: relation between processing, rheology, and morphology. Journal of Colloid and Interface Science, 329(1), 38-47. http://dx.doi.org/10.1016/j.jcis.2008.09.020. PMid:18848336.

37 Carastan, D. J., Vermogen, A., Masenelli-Varlot, K., & Demarquette, N. R. (2010). Quantification of clay dispersion in nanocomposites of styrenic polymers. Polymer Engineering and Science, 50(2), 257-267. http://dx.doi.org/10.1002/pen.21527.

38 Gaspar, H., Santos, R., Teixeira, P., Hilliou, L., Weir, M. P., Duif, C. P., Bouwman, W. G., Parnell, S. R., King, S. M., Covas, J. A., & Bernardo, G. (2019). Evolution of dispersion in the melt compounding of a model polymer nanocomposite system: A multi-scale study. Polymer Testing, 76, 109-118. http://dx.doi.org/10.1016/j.polymertesting.2019.03.013.

39 Fernandez, M., Huegun, A., & Santamaria, A. (2019). Relevance of rheology on the properties of PP/MWCNT nanocomposites elaborated with different irradiation/mixing protocols. Fluids, 4(1), 7. http://dx.doi.org/10.3390/fluids4010007.

40 Hassanabadi, H. M., Wilhelm, M., & Rodrigue, D. (2014). A rheological criterion to determine the percolation threshold in polymer nano-composites. Rheologica Acta, 53(10), 869-882. http://dx.doi.org/10.1007/s00397-014-0804-0.

41 Rostami, A., Masoomi, M., Fayazi, M. J., & Vahdati, M. (2015). Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Advances, 5(41), 32880-32890. http://dx.doi.org/10.1039/C5RA04043D.

42 Poothanari, M. A., Xavier, P., Bose, S., Kalarikkal, N., Komalan, C., & Thomas, S. (2019). Compatibilising action of multiwalled carbon nanotubes in polycarbonate/polypropylene (PC/PP) blends: phase morphology, viscoelastic phase separation, rheology and percolation. Journal of Polymer Research, 26(8), 178. http://dx.doi.org/10.1007/s10965-019-1833-2.

43 Pötschke, P., Fornes, T. D., & Paul, D. R. (2002). Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer, 43(11), 3247-3255. http://dx.doi.org/10.1016/S0032-3861(02)00151-9.

44 Kota, A. K., Cipriano, B. H., Duesterberg, M. K., Gershon, A. L., Powell, D., Raghavan, S. R., & Bruck, H. A. (2007). Electrical and rheological percolation in polystyrene / MWCNT nanocomposites. Macromolecules, 40(20), 7400-7406. http://dx.doi.org/10.1021/ma0711792.

45 Wu, G., Lin, J., Zheng, Q., & Zhang, M. (2006). Correlation between percolation behavior of electricity and viscoelasticity for graphite filled high density polyethylene. Polymer, 47(7), 2442-2447. http://dx.doi.org/10.1016/j.polymer.2006.02.017.

46 Huang, A., Wang, H., Ellingham, T., Peng, X., & Turng, L.-S. (2019). An improved technique for dispersion of natural graphite particles in thermoplastic polyurethane by sub-critical gas-assisted processing. Composites Science and Technology, 182, 107783. http://dx.doi.org/10.1016/j.compscitech.2019.107783.

47 Banerjee, J., Kummara, S., Panwar, A. S., Mukhopadhyay, K., Saxena, A. K., & Bhattacharyya, A. R. (2021). Influence of carbon nanotube type and novel modification on dispersion, melt-rheology and electrical conductivity of polypropylene/carbon nanotube composites. Polymer Composites, 42(1), 236-252. http://dx.doi.org/10.1002/pc.25821.
 

6356f8cba9539536e57ed193 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections