Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20210041
Polímeros: Ciência e Tecnologia
Original Article

Increasing the physical and combustion performance of Oriental beech by impregnating borates and coating liquid glass

Yilmaz Anil Gunbekler; Hilmi Toker; Caglar Altay; Mustafa Kucuktuvek; Ergun Baysal

Downloads: 0
Views: 720

Abstract

This study was designed to investigate physical properties such as color changes after weathering and water absorption (WA) levels, and combustion performance of borates-impregnated and LG-coated Oriental beech wood. Results showed that borates impregnated and LG-coated Oriental beech wood showed positive lightness stability after weathering. The best color stabilization was obtained with LG-coated Oriental beech. Except for the 1 h WA period, LG did not show a water repellent effect after the water absorption test. Borates impregnation before LG-coating caused to decrease in weight loss of Oriental beech after the combustion test. Moreover, the lowest weight losses were obtained in borate impregnated Oriental beech wood.

Keywords

physical properties, combustion properties, borates, liquid glass, Oriental beech wood

References

1 Kartal, S. N., & Imamura, Y. (2004). The use of boron as wood preservative systems for wood and wood-based composites. In II International Boron Symposium (pp. 333-338). Eskişehir, Turkey: Solid State Sciences.

2 Baysal, E. (2011). Combustion properties of Calabrian pine impregnated with aqueous solutions of commercial fertiliziers. African Journal of Biotechnology, 10(82), 19255-19260. http://dx.doi.org/10.5897/AJB11.3054.

3 Pandey, K. K. (2005). Study of the effect of photo-irradiation on the surface chemistry of wood. Polymer Degradation & Stability, 90(1), 9-20. http://dx.doi.org/10.1016/j.polymdegradstab.2005.02.009.

4 Huang, X., Kocaefe, D., Kocaefe, Y., Boluk, Y., & Pichette, A. (2012). A spectrocolorimetric and chemical study on color modification of thermally modified wood during artificial weathering. Applied Surface Science, 258(14), 5360-5369. http://dx.doi.org/10.1016/j.apsusc.2012.02.005.

5 Berdahl, P., Akbari, H., Levinson, R., & Miller, W. A. (2008). Weathering of roofing materials-an overview. Construction & Building Materials, 22(4), 423-433. http://dx.doi.org/10.1016/j.conbuildmat.2006.10.015.

6 Ors, Y., & Keskin, H. (2008). Ağaç malzeme teknolojisi. Ankara, Turkey: Gazi University Publishing.

7 Salem, M. Z. M., Zidan, Y. E., El Hadidi, N. M. N., Mansour, M. M. A., & Abo Elgat, W. A. A. (2016). Evaluation of usage three natural extracts applied to three commercial wood species against five common molds. International Biodeterioration & Biodegradation, 110, 206-226. http://dx.doi.org/10.1016/j.ibiod.2016.03.028.

8 Cristea, M. V., Riedl, B., & Blanchet, P. (2010). Enhancing the performance of exterior waterborne coatings for wood by inorganic nanosized UV absorbers. Progress in Organic Coatings, 69(4), 432-441. http://dx.doi.org/10.1016/j.porgcoat.2010.08.006.

9 Herrera, R., Sandak, J., Robles, E., Krystofiak, T., & Labidi, J. (2018). Weathering resistance of thermally modified wood finished with coatings of diverse formulations. Progress in Organic Coatings, 119, 145-154. http://dx.doi.org/10.1016/j.porgcoat.2018.02.015.

10 Pandey, K. K., & Pitman, A. J. (2002). Weathering characteristics of modified rubberwood (Hevea brasiliensis). Journal of Applied Polymer Science, 85(3), 622-631. http://dx.doi.org/10.1002/app.10667.

11 Prieto, J., & Kiene, J. (2007). Holzbeschichtung: chemie und praxis. Hannover: Vincentz Network.

12 Isonem. (2019, 3 february). Retrieved in 2021, May 15, from http://www.isonem.com

13 LeVan, S. L., & Winandy, J. E. (1990). Effects of fire retardant treatments on wood strength: a review. Wood and Fiber Science, 22(1), 113-131. Retrieved in 2021, May 15, from https://wfs.swst.org/index.php/wfs/article/view/2074

14 Drysdale, D. (1996). An introduction to fire dynamics. USA: John Wiley & Sons.

15 Thevenon, M. F., Pizzi, A., & Haluk, J. P. (1997). Non-toxic albumin and soja protein borates as ground-contact wood preservatives. Holz als Roh- und Werkstoff, 55(5), 293-296. http://dx.doi.org/10.1007/s001070050231.

16 Yalinkilic, M. K., Yusuf, S., Yimura, T., Takahashi, M., & Tsunoda, K. (1996). Effect of vapor phase formalization of boric acid treated wood on boron leachability and biological resistance. In 3rd Pacific Rim bio-Based Composite Symposium (pp. 544-551). Kyoto, Japan: BIOCOMP.

17 Arthur, L. T., & Quill, K. (1992). Commercial flame retardant applications of boron compounds. In Flame Retardants 92 Conference (pp. 233-237). Westminster, London: Elsevier Applied Science.

18 American Society for Testing and Materials – ASTM. (2007). ASTM 1413-07e1: standard test method for wood preservatives by laboratory soil-block cultures. West Conshohocken: ASTM International.

19 Turkish State Meteorological Service. (2020). Retrieved in 2021, May 15, from http://www.mgm.gov.tr

20 American Society for Testing and Materials – ASTM. (2013). ASTM D7787/D7787M-13: standard practice for selecting wood substrates for weathering evaluations of architectural coatings. West Conshohocken: ASTM International.

21 American Society for Testing and Materials – ASTM. (2013). ASTM G7/G7M-13: standard practice for atmospheric environmental exposure testing of nonmetallic materials. West Conshohocken: ASTM International.

22 Zhang, X. (2003). Photo-resistance of alkyl ammonium compound treated wood (Master thesis). The University of British Colombia, Vancouver, Canada. Retrieved in 2021, May 15, from https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0075034

23 American Society for Testing and Materials – ASTM. (1964). ASTM D1536-58 T: tentativemethod of test color difference using the color master differential colourimeter. West Conshohocken: ASTM International.

24 American Society for Testing and Materials – ASTM (2007). ASTM-E 69: standard test methods for combustible properties of treated wood by the fire apparatus. West Conshohocken: ASTM International.

25 Sandak, J., Sandak, A., & Riggio, M. (2015). Characterization and monitoring of surface weathering on exposed timber structures with a multi-sensor approach. International Journal of Architectural Heritage, 9(6), 674-688. http://dx.doi.org/10.1080/15583058.2015.1041190.

26 Mohebby, B., & Saei, A. M. (2015). Effects of geographical directions and climatological parameters on natural weathering of fir wood. Construction & Building Materials, 94, 684-690. http://dx.doi.org/10.1016/j.conbuildmat.2015.07.049.

27 Ghosh, S. C., Militz, H., & Mai, C. (2009). Natural weathering of Scots pine (Pinus sylvestris L.) boards modified with functionalised commercial silicone emulsions. BioResources, 4, 659-673. http://dx.doi.org/10.15376/BIORES.4.2.659-673.

28 Ustun, S., Baysal, E., Turkoglu, T., Toker, H., Sacli, C., & Peker, H. (2016). Surface characteristics of Scots pine treated with chemicals containing some copper compounds after weathering. Wood Research, 61(6), 903-914., Retrieved in 2021, May 15, from http://www.woodresearch.sk/wr/201606/06.pdf

29 Baysal, E. (2012). Surface characteristics of CCA treated Scots pine after accelerated weathering. Wood Research, 57(3), 375-382. Retrieved in 2021, May 15, from http://www.woodresearch.sk/wr/201203/04.pdf

30 Simsek, H., & Baysal, E. (2012). An investigation on colour and gloss changes of wood impregnated with borates. Wood Research, 57(2), 271-277. Retrieved in 2021, May 15, from http://www.woodresearch.sk/wr/201202/09.pdf

31 Hon, D. N.-S., & Chang, S.-T. (1985). Photoprotection of wood surfaces by wood-ion complexes. Wood and Fiber Science, 17(1), 92-100. Retrieved in 2021, May 15, from https://wfs.swst.org/index.php/wfs/article/view/325

32 Grelier, S., Castellan, A., & Kamdem, D. P. (2000). Photoprotection of copper-amine-treated pine. Wood and Fiber Science, 32(2), 196-202. Retrieved in 2021, May 15, from https://wfs.swst.org/index.php/wfs/article/view/240

33 Petric, M., Kricej, B., Humar, M., Pavlic, M., & Tomazic, M. (2004). Patination of cherrywood and spruce wood with ethanolamine and surface finishes. Surface Coatings International. Part B, Coatings Transactions, 87(3), 195-201. http://dx.doi.org/10.1007/BF02699635.

34 Hafizoglu, H., Yalinkilic, M. K., Yildiz, U. C., Baysal, E., Peker, H., & Demirci, Z. (1994). Türkiye bor kaynaklarının odun koruma (Emprenye) endüstrisinde değerlendirilme imkânları, TOAG–875 (Tübitak Project). Trabzon, Turkey: Karadeniz Teknik Üniversitesi.

35 Baysal, E., Yalinkilic, M. K., Altinok, M., Sonmez, A., Peker, H., & Colak, M. (2007). Some physical, biological, mechanical, and fire properties of wood polymer composite (WPC) pretreated with boric acid and borax mixture. Construction & Building Materials, 21(9), 1879-1885. http://dx.doi.org/10.1016/j.conbuildmat.2006.05.026.

36 Baysal, E., Peker, H., & Colak, M. (2004). Borlu bileşikler ve su itici maddelerin cennet ağacı odununun fiziksel özellikleri üzerine etkileri. Erciyes University Journal of Institute Science and Technology, 20(1-2), 55-65. Retrieved in 2021, May 15, from https://dergipark.org.tr/tr/pub/erciyesfen/issue/25602/270163

37 Yalinkilic, M. K., Baysal, E., & Demirci, Z. (1997). Bazı borlu bileşiklerin ve su itici maddelerinin Kızılçam odununun yanma özellikleri üzerine etkileri. Turkish Journal of Agriculture and Forestry, 21, 423-431.
 

61a6234ca953950c20099185 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections