Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20210026
Polímeros: Ciência e Tecnologia
Original Article

Chitosan-based hydrogel for treatment of temporomandibular joint arthritis

Fabianne Lima; Wanderson Gabriel Melo; Maria de Fátima Braga; Ewerton Vieira; João Victor Câmara; Josué Junior Pierote; Napoleão Argôlo Neto; Edson Silva Filho; Ana Cristina Fialho

Downloads: 1
Views: 711

Abstract

To produce polysaccharide-based hydrogels and cerium (Ce3+) doped hydroxyapatite plus chitosan and collagen to enable future applications in the treatment of joint degeneration. Hydrogel production and characterization were performed with Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA) and cytotoxicity testing with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. A final biomaterial composition was Kelcogel® Gelana (58%), chitosan (22.3%), Ce3+ doped hydroxyapatite (10.7%) and bovine collagen (9%), or selected aspect material gelatinous physical color with whitish color and can be injected. The biomaterial composition was proven in the FTIR and TGA, which also provided the maximum supported temperature. In the MTT assay, despite the reduction in viability of the experimental group compared to the control group, cell viability remained approximately 90%. In the FTIR and TGA tests, the material composition was proven. The material does not present cytotoxic behavior for the MTT test, being an alternative for the treatment of joint diseases.

Keywords

hydrogel scaffold, natural polysaccharides, joint arthritis

References

1 Turnbull, G., Clarke, J., Picard, F., Riches, P., Jia, L., Han, F., Li, B., & Shu, W. (2017). 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 3(3), 278-314. http://dx.doi.org/10.1016/j.bioactmat.2017.10.001. PMid:29744467.

2 Chen, Q., Shao, X., Ling, P., Liu, F., Han, G., & Wang, F. (2017). Recent advances in polysaccharides for osteoarthritis therapy. European Journal of Medicinal Chemistry, 139, 926-935. http://dx.doi.org/10.1016/j.ejmech.2017.08.048. PMid:28881287.

3 Onuora, S. (2017). Osteoarthritis: UCMA links cartilage and bone in OA. Nature Reviews. Rheumatology, 13(3), 130. http://dx.doi.org/10.1038/nrrheum.2017.9. PMid:28202914.

4 Zhang, D., Hu, Z., Zhang, L., Lu, S., Liang, F., & Li, S. (2020). Chitosan-based thermo-sensitive hydrogel loading oyster peptides for hemostasis application. Materials, 13(21), 5038. http://dx.doi.org/10.3390/ma13215038. PMid:33182319.

5 Vincent, T. L., & Watt, F. E. (2018). Osteoarthritis. Medicine, 46(3), 187-195. http://dx.doi.org/10.1016/j.mpmed.2017.12.009.

6 Qindeel, M., Khan, D., Ahmed, N., & Khan, S. (2020). Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano, 14(4), 4662-4681. http://dx.doi.org/10.1021/acsnano.0c00364. PMid:32207921.

7 Scognamiglio, F., Travan, A., Donati, I., Borgogna, M., & Marsich, E. (2020). A hydrogel system based on a lactose-modified chitosan for viscosupplementation in osteoarthritis. Carbohydrate Polymers, 248, 116787. http://dx.doi.org/10.1016/j.carbpol.2020.116787. PMid:32919575.

8 Zoratto, N., & Matricardi, P. (2018). Semi-IPN- and IPN-Based Hydrogels. Advances in Experimental Medicine and Biology, 1059, 155-188. http://dx.doi.org/10.1007/978-3-319-76735-2_7. PMid:29736573.

9 He, Z., Wang, B., Hu, C., & Zhao, J. (2017). An overview of hydrogel-based intra-articular drug delivery for the treatment of osteoarthritis. Colloids and Surfaces B, Biointerfaces, 154, 33-39. http://dx.doi.org/10.1016/j.colsurfb.2017.03.003. PMid:28288340.

10 Saeedi, T., Alotaibi, H. F., & Prokopovich, P. (2020). Polymer colloids as drug delivery systems for the treatment of arthritis. Advances in Colloid and Interface Science, 285, 102273. http://dx.doi.org/10.1016/j.cis.2020.102273. PMid:33002783.

11 Chuah, Y. J., Peck, Y., Lau, J. E., Hee, H. T., & Wang, D. A. (2017). Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomaterials Science, 5(4), 613-631. http://dx.doi.org/10.1039/C6BM00863A. PMid:28233881.

12 Benltoufa, S., Miled, W., Trad, M., Slama, R. B., & Fayala, F. (2020). Chitosan hydrogel-coated cellulosic fabric for medical end-use: antibacterial properties, basic mechanical and comfort properties. Carbohydrate Polymers, 227, 115352. http://dx.doi.org/10.1016/j.carbpol.2019.115352. PMid:31590862.

13 Dua, R., Comella, K., Butler, R., Castellanos, G., Brazille, B., Claude, A., Agarwal, A., Liao, J., & Ramaswamy, S. (2016). Integration of stem cell to chondrocyte-derived cartilage matrix in healthy and osteoarthritic states in the presence of hydroxyapatite nanoparticles. PLoS One, 11(2), 0149121. http://dx.doi.org/10.1371/journal.pone.0149121. PMid:26871903.

14 Tanaka, T., Matsushita, T., Nishida, K., Takayama, K., Nagai, K., Araki, D., Matsumoto, T., Tabata, Y., & Kuroda, R. (2019). Attenuation of osteoarthritis progression in mice following intra-articular administration of simvastatin-conjugated gelatin hydrogel. Journal of Tissue Engineering and Regenerative Medicine, 13(3), 423-432. http://dx.doi.org/10.1002/term.2804. PMid:30644168.

15 Bordbar, S., Lotfi Bakhshaiesh, N., Khanmohammadi, M., Sayahpour, F. A., Alini, M., & Baghaban Eslaminejad, M. (2020). Production and evaluation of decellularized extracellular matrix hydrogel for cartilage regeneration derived from knee cartilage. Journal of Biomedical Materials Research. Part A, 108(4), 938-946. http://dx.doi.org/10.1002/jbm.a.36871. PMid:31894891.

16 Hemmati-Sadeghi, S., Dey, P., Ringe, J., Haag, R., Sittinger, M., & Dehne, T. (2019). Biomimetic sulfated polyethylene glycol hydrogel inhibits proteoglycan loss and tumor necrosis factor-α-induced expression pattern in an osteoarthritis in vitro model. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 107(3), 490-500. http://dx.doi.org/10.1002/jbm.b.34139. PMid:29663644.

17 Lee, C., O’Connell, C. D., Onofrillo, C., Choong, P. F. M., Di Bella, C., & Duchi, S. (2020). Human articular cartilage repair: sources and detection of cytotoxicity and genotoxicity in photo-crosslinkable hydrogel bioscaffolds. Stem Cells Translational Medicine, 9(3), 302-315. http://dx.doi.org/10.1002/sctm.19-0192. PMid:31769213.

18 Brugnerotto, J., Lizardi, J., Goycoolea, F. M., Argüelles-Monal, W., Desbrières, J., & Rinaudo, M. (2001). An infrared investigation in relation with chitin and chitosan characterization. Polymer, 42(8), 3569-3580. http://dx.doi.org/10.1016/S0032-3861(00)00713-8.

19 López, F. A., Mercê, A. L. R., Alguacil, F. J., & López-Delgado, A. A. (2008). A kinetic study on the thermal behaviour of chitosan. Journal of Thermal Analysis and Calorimetry, 91(2), 633-639. http://dx.doi.org/10.1007/s10973-007-8321-3.

20 Fráguas, R. M., Simão, A. A., Faria, P. V., Queiroz, E. R., Oliveira, E. N., Jr., & Abreu, C. M. P. (2015). Preparation and characterization chitosan edible films. Polímeros: Ciência e Tecnologia, 25(spe), 48-53. https://doi.org/10.1590/0104-1428.1656.

21 Dourado, E. R. (2006). Preparação e caracterização de hidroxiapatita nanoestruturada dopada com estrôncio (Master’s thesis). Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro.

22 Ray, R., Maity, S., Mandal, S., Chatterjee, T., & Sa, B. (2010). Development and evaluation of a new interpenetrating network bead of sodium carboxymethyl xanthan and sodium alginate. Pharmacology & Pharmacy, 1(1), 9-17. http://dx.doi.org/10.4236/pp.2010.11002.

23 Causa, F., Netti, P. A., & Ambrosio, L. A. (2007). A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials, 28(34), 5093-5099. http://dx.doi.org/10.1016/j.biomaterials.2007.07.030. PMid:17675151.

24 Majumdar, T., Cooke, M. E., Lawless, B. M., Bellier, F., Hughes, E. A. B., Grover, L. M., Jones, S. W., & Cox, S. C. (2018). Formulation and viscoelasticity of mineralised hydrogels for use in bone-cartilage interfacial reconstruction. Journal of the Mechanical Behavior of Biomedical Materials, 80, 33-41. http://dx.doi.org/10.1016/j.jmbbm.2018.01.016. PMid:29414473.

25 Koh, R. H., Jin, Y., Kim, J., & Hwang, N. S. (2020). Inflammation-modulating hydrogels for osteoarthritis cartilage tissue engineering. Cells, 9(2), 419. http://dx.doi.org/10.3390/cells9020419. PMid:32059502.

26 Kim, H., Mondal, S., Bharathiraja, S., Manivasagan, P., Moorthy, M. S., & Oh, J. (2018). Optimized Zn-doped hydroxyapatite/doxorubicin bioceramics system for efficient drug delivery and tissue engineering application. Ceramics International, 44(6), 6062-6071. http://dx.doi.org/10.1016/j.ceramint.2017.12.235.

27 Cui, Y., Xing, Z., Yan, J., Lu, Y., Xiong, X., & Zheng, L. (2018). Thermosensitive behavior and super-antibacterial properties of cotton fabrics modified with a sercin-NIPAAm-AgNPs interpenetrating polymer Network Hydrogel. Polymers, 10(8), 818. http://dx.doi.org/10.3390/polym10080818. PMid:30960743.

28 Pandey, A., Midha, S., Sharma, R. K., Maurya, R., Nigam, V. K., Ghosh, S., & Balani, K. (2018). Antioxidant and antibacterial hydroxyapatite-based biocomposite for orthopedic applications. Materials Science and Engineering C, 88, 13-24. http://dx.doi.org/10.1016/j.msec.2018.02.014. PMid:29636127.

29 Leone, G., Consumi, M., Pepi, S., Pardini, A., Bonechi, C., Tamasi, G., Donati, A., Lamponi, S., Rossi, C., & Magnani, A. (2020). Enriched Gellan Gum hydrogel as visco-supplement. Carbohydrate Polymers, 227, 115347. http://dx.doi.org/10.1016/j.carbpol.2019.115347. PMid:31590845.

30 Meschini, S., Pellegrini, E., Maestri, C. A., Condello, M., Bettotti, P., Condello, G., & Scarpa, M. (2020). In vitro toxicity assessment of hydrogel patches obtained by cation-induced cross-linking of rod-like cellulose nanocrystals. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 108(3), 687-697. http://dx.doi.org/10.1002/jbm.b.34423. PMid:31134760.

31 Wang, B., Zhang, S., Wang, Y., Si, B., Cheng, D., Liu, L., & Lu, Y. (2019). Regenerated Antheraea pernyi Silk Fibroin/Poly(N-isopropylacrylamide) Thermosensitive Composite Hydrogel with Improved Mechanical Strength. Polymers, 11(2), 302. http://dx.doi.org/10.3390/polym11020302. PMid:30960286.

32 Balasubramanian, R., Kim, S. S., & Lee, J. (2018). Novel synergistic transparent k-Carrageenan/Xanthan gum/Gellan gum hydrogel film: mechanical, thermal and water barrier properties. International Journal of Biological Macromolecules, 118(Pt A), 561-568. http://dx.doi.org/10.1016/j.ijbiomac.2018.06.110. PMid:29949745.

33 Dhivya, S., Saravanan, S., Sastry, T. P., & Selvamurugan, N. (2015). Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. Journal of Nanobiotechnology, 13(1), 40. http://dx.doi.org/10.1186/s12951-015-0099-z. PMid:26065678.
 

61a62057a9539509ee1550d4 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections