Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20210013
Polímeros: Ciência e Tecnologia
Original Article

Modification of poly(lactic acid) filament with expandable graphite for additive manufacturing using fused filament fabrication (FFF): effect on thermal and mechanical properties

João Miguel Ayres Melillo; Iaci Miranda Pereira; Artur Caron Mottin; Fernando Gabriel da Silva Araujo

Downloads: 2
Views: 763

Abstract

Fused Filament Fabrication, better known as Fused Deposition Modeling®, is currently the most widespread 3D Printing Technology. There has been a significant demand for developing flame-retardant filaments. Thereby enabling them, for example, in electronics and automotive applications. In this study, commercial PLA filament was modified by the addition of 1, 3 and 5% (%wt.) of expandable graphite. The composites were reprocessed, via extrusion, into filaments for Fused Filament Fabrication. Thermal properties of the filament composites were evaluated by thermogravimetric analysis and differential scanning calorimetry. Mechanical properties of thermo-pressed specimens indicated that no strong adhesion was promoted between the filler and matrix. This is a challenge with expandable graphite reported by many authors. All composites with expandable graphite achieved the V-2 rating of UL-94 flammability test. In spite of this, the results indicated that flammability of the PLA was reduced. All composite filaments were printable and prototypes were successfully 3D printed.

Keywords

Fused Filament Fabrication (FFF), PLA, expandable graphite, prototypes

References

1 Khosravani, M. R., & Reinicke, T. (2020). On the environmental impacts of 3D printing technology. Applied Materials Today, 20, 100689. http://dx.doi.org/10.1016/j.apmt.2020.100689.

2 Wu, H., Sulkis, M., Driver, J., Saade-Castillo, A., Thompson, A., & Koo, J. H. (2018). Multi-functional ULTEMTM1010 composite filaments for additive manufacturing using Fused Filament Fabrication (FFF). Addittive Manufecturing, 24, 298-306. http://dx.doi.org/10.1016/j.addma.2018.10.014.

3 Singh, S., Ramakrishna, S., & Berto, F. (2020). 3D Printing of polymer composites: a short review. Material Design & Processing Communications, 2(2), e97. http://dx.doi.org/10.1002/mdp2.97.

4 Seng, C. T., A/L Eh Noum, S. Y., A/L Sivanesan, S. K. & Yu, L.-J. (2020). Reduction of hygroscopicity of PLA filament for 3D printing by introducing nano silica as filler. AIP Conference Proceedings, 2233(1), 020024. https://doi.org/10.1063/5.0001927.

5 Lee, K. M., Park, H., Kim, J., & Chun, D. M. (2019). Fabrication of a superhydrophobic surface using a fused deposition modeling (FDM) 3D printer with poly lactic acid (PLA) filament and dip coating with silica nanoparticles. Applied Surface Science, 467, 979-991. http://dx.doi.org/10.1016/j.apsusc.2018.10.205.

6 Maqsood, M., & Seide, G. (2020). Biodegradable Flame Retardants for Biodegradable Polymer. Biomolecules, 10(7), 1038. http://dx.doi.org/10.3390/biom10071038. PMid:32664598.

7 Chow, W. S., Teoh, E. L., & Karger-Kocsis, J. (2018). Flame retarded poly (lactic acid): A review. Express Polymer Letters, 12(5), 396-417. http://dx.doi.org/10.3144/expresspolymlett.2018.34.

8 Wang, X., He, W., Long, L., Huang, S., Qin, S., & Xu, G. (2020). A phosphorus-and nitrogen-containing DOPO derivative as flame retardant for polylactic acid (PLA). Journal of Thermal Analysis and Calorimetry, 145(2), 331-343. http://dx.doi.org/10.1007/s10973-020-09688-7.

9 Xue, Y., Zuo, X., Wang, L., Zhou, Y., Pan, Y., Li, J., Yin, Y., Li, D., Yang, R., Rafailovich, M. H., & Guo, Y. (2020). Enhanced flame retardancy of poly (lactic acid) with ultra-low loading of ammonium polyphosphate. Composites. Part B, Engineering, 196, 108124. http://dx.doi.org/10.1016/j.compositesb.2020.108124.

10 Babu, K., Rendén, G., Afriyie Mensah, R., Kim, N. K., Jiang, L., Xu, Q., Restás, Á., Esmaeely Neisiany, R., Hedenqvist, M. S., Försth, M., Byström, A., & Das, O. (2020). A review on the flammability properties of carbon-based polymeric composites: state-of-the-art and future trends. Polymers, 12(7), 1518. http://dx.doi.org/10.3390/polym12071518. PMid:32650531.

11 Wei, P., Bocchini, S., & Camino, G. (2013). Flame retardant and thermal behavior of polylactide/expandable graphite composites. Polimery, 58(5), 361-364. http://dx.doi.org/10.14314/polimery.2013.361.

12 Brisigueli, R. P., & Morales, A. R. (2014). Study of mechanical and thermal behavior of pla modified with nucleating additive and impact modifier. Polímeros: Ciência e Tecnologia, 24(2), 198-202. http://dx.doi.org/10.4322/polimeros.2014.042.

13 Jang, J., & Lee, E. (2000). Improvement of the flame retardancy of paper-sludge/polypropylene composite. Polymer Testing, 20(1), 7-13. http://dx.doi.org/10.1016/S0142-9418(99)00072-0.

14 Yang, Y., Haurie, L., Wen, J., Zhang, S., Ollivier, A., & Wang, D. Y. (2019). Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant properties of polylactide biocomposites. Industrial Crops and Products, 130, 301-309. http://dx.doi.org/10.1016/j.indcrop.2018.12.090.

15 Liu, C., Ye, S., & Feng, J. (2017). Promoting the dispersion of graphene and crystallization of poly (lactic acid) with a freezing-dried graphene/PEG masterbatch. Composites Science and Technology, 144, 215-222. http://dx.doi.org/10.1016/j.compscitech.2017.03.031.

16 Acuña, P., Li, Z., Santiago-Calvo, M., Villafañe, F., Rodríguez-Perez, M. Á., & Wang, D. Y. (2019). Influence of the characteristics of expandable graphite on the morphology, thermal properties, fire behaviour and compression performance of a rigid polyurethane foam. Polymers, 11(1), 168. http://dx.doi.org/10.3390/polym11010168. PMid:30960151.

17 Uhl, F. M., Yao, Q., Nakajima, H., Manias, E., & Wilkie, C. A. (2005). Expandable graphite/polyamide-6 nanocomposites. Polymer Degradation & Stability, 89(1), 70-84. http://dx.doi.org/10.1016/j.polymdegradstab.2005.01.004.

18 Mngomezulu, M. E., Luyt, A. S., & John, M. J. (2019). Morphology, thermal and dynamic mechanical properties of poly (lactic acid)/expandable graphite (PLA/EG) flame retardant composites. Journal of Thermoplastic Composite Materials, 32(1), 89-107. http://dx.doi.org/10.1177/0892705717744830.

19 Bannach, G., Perpétuo, G. L., Cavalheiro, E. T. G., Cavalheiro, C. C. S., & Rocha, R. R. (2011). Effects of the thermal history on thermal properties of polymers: an experiment for thermal analysis education. Quimica Nova, 34(10), 1825-1829. http://dx.doi.org/10.1590/S0100-40422011001000016.

20 Athanasoulia, I. G. I., Christoforidis, M. N., Korres, D. M., & Tarantili, P. A. (2019). The effect of poly(ethylene glycol)mixed with poly(L-lactic acid) on the crystallization characteristics and properties of their blends. Polymer International, 68(4), 788-804. http://dx.doi.org/10.1002/pi.5769.

21 Refaa, Z., Boutaous, M. H., Xin, S., & Siginer, D. A. (2017). Thermophysical analysis and modeling of the crystallization and melting behavior of PLA with talc. Journal of Thermal Analysis and Calorimetry, 128(2), 687-698. http://dx.doi.org/10.1007/s10973-016-5961-1.

22 Li, H., & Huneault, M. A. (2007). Effect of nucleation and plasticization on the crystallization of poly (lactic acid). Polymer, 48(23), 6855-6866. http://dx.doi.org/10.1016/j.polymer.2007.09.020.

23 Li, F. J., Zhang, S. D., Liang, J. Z., & Wang, J. Z. (2015). Effect of polyethylene glycol on the crystallization and impact properties of polylactide‐based blends. Polymers for Advanced Technologies, 26(5), 465-475. http://dx.doi.org/10.1002/pat.3475.

24 Ortenzi, M. A., Basilissi, L., Farina, H., Di Silvestro, G., Piergiovanni, L., & Mascheroni, E. (2015). Evaluation of crystallinity and gas barrier properties of films obtained from PLA nanocomposites synthesized via “in situ” polymerization of l-lactide with silane-modified nanosilica and montmorillonite. European Polymer Journal, 66, 478-491. http://dx.doi.org/10.1016/j.eurpolymj.2015.03.006.

25 Hu, Y., Hu, Y. S., Topolkaraev, V., Hiltner, A., & Baer, E. (2003). Crystallization and phase separation in blends of high stereoregular poly (lactide) with poly (ethylene glycol). Polymer, 44(19), 5681-5689. http://dx.doi.org/10.1016/S0032-3861(03)00609-8.

26 Athanasoulia, I.-G., Giachalis, K., Todorova, N., Giannakopoulou, T., Tarantili, P., & Trapalis, C. (2021). Preparation of hybrid composites of PLLA using GO/PEG masterbatch and their characterization. Journal of Thermal Analysis and Calorimetry, 143(5), 3385-3399. http://dx.doi.org/10.1007/s10973-019-09227-z.

27 Barletta, M., Pizzi, E., Puopolo, M., Vesco, S., & Daneshvar‐Fatah, F. (2017). Thermal behavior of extruded and injection‐molded poly (lactic acid)–talc engineered biocomposites: effects of material design, thermal history, and shear stresses during melt processing. Journal of Applied Polymer Science, 134(32), 45179. http://dx.doi.org/10.1002/app.45179.

28 Murariu, M., Dechief, A. L., Bonnaud, L., Paint, Y., Gallos, A., Fontaine, G., Bourbigot, S., & Dubois, P. (2010). The production and properties of polylactide composites filled with expanded graphite. Polymer Degradation & Stability, 95(5), 889-900. http://dx.doi.org/10.1016/j.polymdegradstab.2009.12.019.

29 Androsch, R., Zhang, R., & Schick, C. (2019). Melt-recrystallization of poly (L-lactic acid) initially containing α′-crystals. Polymer, 176, 227-235. http://dx.doi.org/10.1016/j.polymer.2019.05.052.

30 Yang, Y. X., Haurie, L., Zhang, J., Zhang, X. Q., Wang, R., & Wang, D. Y. (2020). Effect of bio-based phytate (PA-THAM) on the flame retardant and mechanical properties of polylactide (PLA). Express Polymer Letters, 14(8), 705-716. http://dx.doi.org/10.3144/expresspolymlett.2020.58.

31 Li, R., Wang, N., Bai, Z., Chen, S., Guo, J., & Chen, X. (2021). Microstructure design of polypropylene/expandable graphite flame retardant composites toughened by the polyolefin elastomer for enhancing its mechanical properties. RSC Advances, 11(11), 6022-6034. http://dx.doi.org/10.1039/D0RA09978C.

32 Oulmou, F., Benhamida, A., Dorigato, A., Sola, A., Messori, M., & Pegoretti, A. (2019). Effect of expandable and expanded graphites on the thermo-mechanical properties of polyamide 11. Journal of Elastomers and Plastics, 51(2), 175-190. http://dx.doi.org/10.1177/0095244318781956.

33 Przekop, R. E., Kujawa, M., Pawlak, W., Dobrosielska, M., Sztorch, B., & Wieleba, W. (2020). Graphite modified polylactide (PLA) for 3D printed (FDM/FFF) sliding elements. Polymers, 12(6), 1250. http://dx.doi.org/10.3390/polym12061250. PMid:32486090.

34 Sun, Y., Sun, S., Chen, L., Liu, L., Song, P., Li, W., Yu, Y., Fengzhu, L., Qian, J., & Wang, H. (2017). Flame retardant and mechanically tough poly (lactic acid) biocomposites via combining ammonia polyphosphate and polyethylene glycol. Composites Communications, 6, 1-5. http://dx.doi.org/10.1016/j.coco.2017.07.005.

35 Chen, C. H., Yen, W. H., Kuan, H. C., Kuan, C. F., & Chiang, C. L. (2010). Preparation, characterization, and thermal stability of novel PMMA/expandable graphite halogen‐free flame-retardant composites. Polymer Composites, 31(1), 18-24. http://dx.doi.org/10.1002/pc.20787.

36 Li, L., Wang, D., Chen, S., Zhang, Y., Wu, Y., Wang, N., Chen, X., Qin, J., Zhang, K., & Wu, H. (2020). Effect of organic grafting expandable graphite on combustion behaviors and thermal stability of low‐density polyethylene composites. Polymer Composites, 41(2), 719-728. http://dx.doi.org/10.1002/pc.25401.

37 Xiong, W., Liu, H., Tian, H., Wu, J., Xiang, A., Wang, C., Ma, S., & Wu, Q. (2020). Mechanical and flame‐resistance properties of polyurethane‐imide foams with different‐sized expandable graphite. Polymer Engineering and Science, 60(9), 2324-2332. http://dx.doi.org/10.1002/pen.25475.

38 Pagnan, C. S., Mottin, A. C., Oréfice, R. L., Ayres, E., & Câmara, J. J. D. (2018). Annatto-colored poly (3-hydroxybutyrate): a comprehensive study on photodegradation. Journal of Polymers and the Environment, 26(3), 1169-1178. http://dx.doi.org/10.1007/s10924-017-1026-1.

39 Subramaniam, S. R., Samykano, M., Selvamani, S. K., Ngui, W. K., Kadirgama, K., Sudhakar, K., & Idris, M. S. (2019). 3D printing: overview of PLA progress. AIP Conference Proceedings, 2059(1), 020015. https://doi.org/10.1063/1.5085958.

40 Pérez, M., Medina-Sánchez, G., García-Collado, A., Gupta, M., & Carou, D. (2018). Surface quality enhancement of fused deposition modeling (FDM) printed samples based on the selection of critical printing parameters. Materials (Basel), 11(8), 1382. http://dx.doi.org/10.3390/ma11081382. PMid:30096826.

41 Wickramasinghe, S., Do, T., & Tran, P. (2020). FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers, 12(7), 1529. http://dx.doi.org/10.3390/polym12071529. PMid:32664374.
 

61a62484a953950c3d65fc56 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections