Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.20210010
Polímeros: Ciência e Tecnologia
Original Article

Fabrication of fracturing fluid with cationic surfactants and carboxymethyl hydroxyethyl cellulose

Sanbao Dong; Wen Tian; Wenting Qiang; Long Jiao; Jie Zhang; Gang Chen

Downloads: 1
Views: 278

Abstract

The surfactant-polymer-based (S/P) fracturing fluid combines the advantages of the surfactant-based and polymer-based fracturing fluids. In this study, the synergistic tackifying of cationic surfactants and carboxymethyl hydroxyethyl cellulose and the potential application in hydraulic fracturing fluid was investigated. Firstly, cetyltrimethylammonium chloride (CTAC) and salicylic acid (SA) with a weight ratio of 4:1 were optimized as the main agent of the small molecule surfactant gel, which was then mixed with carboxymethyl 2-hydroxyethyl ether cellulose (CMHEC) and salicylic acid (SA) to obtain the S/P gel. The proppant suspension performance, gel-breaking properties, salt-resistance and thermal stability of the optimized S/P were evaluated to confirm their potential application in the hydraulic fracturing fluid. These results showed that the performance of the S/P fracturing fluid system was much better than the performance of the surfactant fracturing fluid and also the performance of polymer fracturing fluid.

 

 

Keywords

clean fracturing fluid, polymer, salicylic acid, surfactant

References

1 Wang, J., Feng, L., Steve, M., Tang, X., Gail, T. E., & Mikael, H. (2015). China’s unconventional oil: A review of its resources and outlook for long-term production. Energy, 82, 31-42. http://dx.doi.org/10.1016/j.energy.2014.12.042.

2 Das, A., Chauhan, G., Verma, A., Kalita, P., & Ojha, K. (2018). Rheological and breaking studies of a novel single-phase surfactant-polymeric gel system for hydraulic fracturing application. Journal of Petroleum Science Engineering, 167, 559-567. http://dx.doi.org/10.1016/j.petrol.2018.04.033.

3 Barati, R., & Liang, J.-T. (2014). A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. Journal of Applied Polymer Science, 131(16), 40735. http://dx.doi.org/10.1002/app.40735.

4 Zhang, Y., Mao, J., Zhao, J., Yang, X., Zhang, Z., Yang, B., Zhang, W., & Zhang, H. (2018). Preparation of a novel ultra-high temperature low-damage fracturing fluid system using dynamic crosslinking strategy. Chemical Engineering Journal, 354, 913-921. http://dx.doi.org/10.1016/j.cej.2018.08.021.

5 Pu, W., Du, D.-J., & Liu, R. (2018). Preparation and evaluation of supramolecular fracturing fluid of hydrophobically associative polymer and viscoelastic surfactant. Journal of Petroleum Science Engineering, 167, 568-576. http://dx.doi.org/10.1016/j.petrol.2018.04.032.

6 Zhang, W., Mao, J., Yang, X., Zhang, H., Zhao, J., Tian, J., Lin, C., & Mao, J. (2019). Development of a sulfonic gemini zwitterionic viscoelastic surfactant with high salt tolerance for seawater-based clean fracturing fluid. Chemical Engineering Science, 207, 688-701. http://dx.doi.org/10.1016/j.ces.2019.06.061.

7 An, M., Huang, H., Zhang, F., & Elsworth, D. (2020). Effect of slick-water fracturing fluid on the frictional properties of shale reservoir rock gouges. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6(1), 28. http://dx.doi.org/10.1007/s40948-020-00153-1.

8 Yang, W., Guan, B., Liang, L., Liu, X. W., & Liu, Y. (2018). Development and application of high salinity water-based fracturing fluid stabilizer. Oilfield Chemistry, 35(4), 622-626.

9 Wang, Y., Zhang, C., Xu, N., Lan, J., Jiang, B., & Meng, L. (2021). Synthesis and properties of organoboron functionalized nanocellulose for crosslinking low polymer fracturing fluid system. RSC Advances, 11(22), 13466-13474. http://dx.doi.org/10.1039/D0RA10105B. PMid:35423881.

10 Zhao, M., Li, Y., Xu, Z., Wang, K., Gao, M., Lv, W., & Dai, C. (2020). Dynamic cross-linking mechanism of acid gel fracturing fluid. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 607, 125471. http://dx.doi.org/10.1016/j.colsurfa.2020.125471.

11 Huang, Q., Liu, S., Wang, G., Wu, B., Yang, Y., & Liu, Y. (2019). Gas sorption and diffusion damages by guar-based fracturing fluid for CBM reservoirs. Fuel, 251, 30-44. http://dx.doi.org/10.1016/j.fuel.2019.04.031.

12 Zhang, Y., Mao, J., Xu, T., Zhang, Z., Yang, B., Mao, J., & Yang, X. (2019). Preparation of a novel fracturing fluid with good heat and shear resistance. RSC Advances, 9(3), 1199-1207. http://dx.doi.org/10.1039/C8RA09483G. PMid:35518047.

13 Shao, Y., Mao, J., Yang, B., Zhao, J., & Yang, X. J. (2020). High performance hydrophobic associated polymer for fracturing fluids with low-dosage. Petroleum Chemistry, 60(2), 219-225. http://dx.doi.org/10.1134/S0965544120020115.

14 Tran, T., Gonzalez Perdomo, M. E., Wilk, K., Kasza, P., & Amrouch, K. (2020). Performance evaluation of synthetic and natural polymers in nitrogen foam-based fracturing fluids in the cooper basin, South Australia. APPEA Journal, 60(1), 227-241. http://dx.doi.org/10.1071/AJ19062.

15 Tang, J., Li, H., Yan, S., & Yan, S. (2020). In situ synthesis, structure, and properties of a dendritic branched nano-thickening agent for high temperature fracturing fluid. Journal of Applied Polymer Science, 137(10), 48446. http://dx.doi.org/10.1002/app.48446.

16 Zhao, X., Guo, J., Peng, H., Pan, R., Aliu, A. O., Lu, Q. L., & Yang, J. (2017). Synthesis and evaluation of a novel clean hydraulic fracturing fluid based on star-dendritic polymer. Journal of Natural Gas Science and Engineering, 43, 179-189. http://dx.doi.org/10.1016/j.jngse.2017.03.015.

17 Zhao, J., Yang, B., Mao, J., Zhang, Y., Yang, X., Zhang, Z., & Shao, Y. (2018). A novel hydrophobic associative polymer by RAFT-MADIX copolymerization for fracturing fluids with high thermal stability. Energy & Fuels, 32(3), 3039-3051. http://dx.doi.org/10.1021/acs.energyfuels.7b03635.

18 Kang, W., Mushi, S. J., Yang, H., Wang, P., & Hou, X. (2020). Development of smart viscoelastic surfactants and its applications in fracturing fluid: A review. Journal of Petroleum Science Engineering, 190, 107107. http://dx.doi.org/10.1016/j.petrol.2020.107107.

19 Yan, J., Li, Y., Xie, X., Slaný, M., Dong, S., Wu, Y., & Chen, G. (2023). Research of a novel fracturing-production fluid base on small molecule surfactant. Journal of Molecular Liquids, 369, 120858. http://dx.doi.org/10.1016/j.molliq.2022.120858.

20 Zhang, W., Mao, J., Yang, X., Zhang, H., Zhang, Z., Yang, B., Zhang, Y., & Zhao, J. (2018). Study of a novel Gemini viscoelastic surfactant with high performance in clean fracturing fluid application. Polymers, 10(11), 1215. http://dx.doi.org/10.3390/polym10111215. PMid:30961140.

21 Wu, Y., Zhang, J., Dong, S., Li, Y., Slaný, M., & Chen, G. (2022). Use of betaine-based gel and its potential application in enhanced oil recovery. Gels (Basel, Switzerland), 8(6), 351. http://dx.doi.org/10.3390/gels8060351. PMid:35735695.

22 Baruah, A., Shekhawat, D. S., Pathak, A. K., & Ojha, K. (2016). Experimental investigation of rheological properties in zwitterionic-anionic mixed-surfactant based fracturing fluids. Journal of Petroleum Science Engineering, 146, 340-349. http://dx.doi.org/10.1016/j.petrol.2016.05.001.

23 Baruah, A., Pathak, A. K., & Ojha, K. (2016). Study on rheology and thermal stability of mixed (nonionic-anionic) surfactant based fracturing fluids. AIChE Journal. American Institute of Chemical Engineers, 62(6), 2177-2187. http://dx.doi.org/10.1002/aic.15175.

24 Baruah, A., Pathak, A. K., & Ojha, K. (2015). Phase behavior and thermodynamic properties of lamellar liquid crystal developed for viscoelastic surfactant based fracturing fluid. Chemical Engineering Science, 131, 146-154. http://dx.doi.org/10.1016/j.ces.2015.03.067.

25 Lv, Q., Li, Z., Li, B., Li, S., & Sun, Q. (2015). Study of nanoparticle-surfactant-stabilized foam as a fracturing fluid. Industrial & Engineering Chemistry Research, 54(38), 9468-9477. http://dx.doi.org/10.1021/acs.iecr.5b02197.

26 Li, C., Huang, Y., Sun, X., Gao, R., Zeng, F., Tontiwachwuthikul, P., & Liang, Z. (2017). Rheological properties study of foam fracturing fluid using CO2 and surfactant. Chemical Engineering Science, 170, 720-730. http://dx.doi.org/10.1016/j.ces.2017.03.022.

27 Yekeen, N., Padmanabhan, E., & Idris, A. K. (2018). A review of recent advances in foam-based fracturing fluid application in unconventional reservoirs. Journal of Industrial and Engineering Chemistry, 66, 45-71. http://dx.doi.org/10.1016/j.jiec.2018.05.039.

28 Ahmed, S., Elraies, K. A., Hashmet, M. R., & Hanamertani, A. S. (2017). Viscosity models for polymer free CO2 foam fracturing fluid with the effect of surfactant concentration, salinity and shear rate. Energies, 10(12), 1970. http://dx.doi.org/10.3390/en10121970.

29 Jing, Z., Feng, C., Wang, S., & Xu, D. (2019). Effects of temperature and pressure on rheology and heat transfer among bubbles in waterless CO2-based foam fracturing fluid. Journal of Natural Gas Science and Engineering, 63, 18-26. http://dx.doi.org/10.1016/j.jngse.2019.01.005.

30 Verma, A., Chauhan, G., & Ojha, K. (2018). Characterization of α-olefin sulfonate foam in presence of cosurfactants: stability, foamability and drainage kinetic study. Journal of Molecular Liquids, 264, 458-469. http://dx.doi.org/10.1016/j.molliq.2018.05.061.

31 Verma, A., Chauhan, G., Ojha, K., & Padmanabhan, E. (2019). Characterization of nano-Fe2O3-stabilized polymer-free foam fracturing fluids for unconventional gas reservoirs. Energy & Fuels, 33(11), 10570-10582. http://dx.doi.org/10.1021/acs.energyfuels.9b02195.

32 Chen, G., Yan, J., Liu, Q., Zhang, J., Li, H., Li, J., Qu, C., & Zhang, Y. (2019). Preparation and surface activity study of amino acid surfactants. Comptes Rendus. Chimie, 22(4), 277-282. http://dx.doi.org/10.1016/j.crci.2018.11.009.

33 Chen, F., Wu, Y., Wang, M., & Zha, R. (2015). Self-assembly networks of wormlike micelles and hydrophobically modified polyacrylamide with high performance in fracturing fluid application. Colloid & Polymer Science, 293(3), 687-697. http://dx.doi.org/10.1007/s00396-014-3454-y.

34 Zhang, Y., Dai, C., Qian, Y., Fan, X., Jiang, J., Wu, Y., Wu, X., Huang, Y., & Zhao, M. (2018). Rheological properties and formation dynamic filtration damage evaluation of a novel nanoparticle-enhanced VES fracturing system constructed with wormlike micelles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 553, 244-252. http://dx.doi.org/10.1016/j.colsurfa.2018.05.065.

35 Qiu, L., Shen, Y., & Wang, C. (2018). pH- and KCl-induced formation of worm-like micelle viscoelastic fluids based on a simple tertiary amine surfactant. Journal of Petroleum Science Engineering, 162, 158-165. http://dx.doi.org/10.1016/j.petrol.2017.12.037.

36 Yang, C., Hu, Z., Song, Z., Bai, J., Zhang, Y., Luo, J., Du, Y., & Jiang, Q. (2017). Self-assembly properties of ultra-long-chain Gemini surfactant with high performance in a fracturing fluid application. Journal of Applied Polymer Science, 134(11), 44602. http://dx.doi.org/10.1002/app.44602.

37 Lu, Y., Yang, F., Ge, Z., Wang, S., & Wang, Q. (2015). The influence of viscoelastic surfactant fracturing fluids on gas desorption in soft seams. Journal of Natural Gas Science and Engineering, 27(Part 3), 1649-1656. http://dx.doi.org/10.1016/j.jngse.2015.10.031.

38 Yang, M., Lu, Y., Ge, Z., Zhou, Z., Chai, C., & Zhang, L. (2020). Optimal selection of viscoelastic surfactant fracturing fluids based on influence on coal seam pores. Advanced Powder Technology, 31(6), 2179-2190. http://dx.doi.org/10.1016/j.apt.2020.03.005.

39 Dai, C., Wu, X., Li, W., You, Q., Zhao, M., Du, M., Liu, Y., & Li, Y. (2015). The role of hydroxyethyl groups in the construction of wormlike micelles in the system of quaternary ammonium surfactant and sodium salicylate. Soft Matter, 11(39), 7817-7826. http://dx.doi.org/10.1039/C5SM01698C. PMid:26314927.

40 Nettesheim, F., Liberatore, M. W., Hodgdon, T. K., Wagner, N. J., Kaler, E. W., & Vethamuthu, M. (2008). Influence of nanoparticle addition on the properties of wormlike micellar solutions. Langmuir, 24(15), 7718-7726. http://dx.doi.org/10.1021/la800271m. PMid:18620438.

41 Gao, Z., Dai, C., Sun, X., Huang, Y., Gao, M., & Zhao, M. W. (2019). Investigation of cellulose nanofiber enhanced viscoelastic fracturing fluid system: increasing viscoelasticity and reducing filtration. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 582, 123938. http://dx.doi.org/10.1016/j.colsurfa.2019.123938.

42 Huang, F., Pu, C., Gu, X., Ye, Z., Khan, N., An, J., Wu, F., & Liu, J. (2021). Study of a low-damage efficient-imbibition fracturing fluid without flowback used for low-pressure tight reservoirs. Energy, 222, 119941. http://dx.doi.org/10.1016/j.energy.2021.119941.

43 Wu, H., Zhou, Q., Xu, D., Sun, R., Zhang, P., Bai, B., & Kang, W. (2018). SiO2 nanoparticle-assisted low-concentration viscoelastic cationic surfactant fracturing fluid. Journal of Molecular Liquids, 266, 864-869. http://dx.doi.org/10.1016/j.molliq.2018.06.107.

44 Huang, T., & Crews, J. B. (2008). Nanotechnology applications in viscoelastic-surfactant stimulation fluids. SPE Production & Operations, 23(4), 512-517. http://dx.doi.org/10.2118/107728-PA.

45 Walker, F., Isabettini, S., Kuster, S., Fischer, P., & Lutz-Bueno, V. (2019). Molecular interactions and the viscoelasticity of micellar aggregates. Physics of Fluids, 31(8), 083101. http://dx.doi.org/10.1063/1.5102110.

46 Dai, C., Zhang, Y., Gao, M., Li, Y., Lv, W., Wang, X., Wu, Y., & Zhao, M. (2017). The study of a novel nanoparticle-enhanced wormlike micellar system. Nanoscale Research Letters, 12(1), 431. http://dx.doi.org/10.1186/s11671-017-2198-2. PMid:28673050.

47 Li, G., Fang, B., Lu, Y., Li, K., Ma, M., Qiu, X., Wang, L., Liu, Y., Yang, M., & Huang, C. (2016). Intrinsic crosslingking and gel-breaking rheo-kinetics of CMHEC/CTAB systems. Journal of Dispersion Science and Technology, 37(11), 1638-1644. http://dx.doi.org/10.1080/01932691.2015.1120220.

48 Aliu, A. O., Guo, J., Wang, S., & Zhao, X. ¨. (2016). Hydraulic fracturing fluid for gas reservoirs in petroleum engineering applications using sodium carboxy methyl cellulose as gelling agent. Journal of Natural Gas Science and Engineering, 32, 491-500. http://dx.doi.org/10.1016/j.jngse.2016.03.064.

49 Sun, R., Fang, B., Lu, Y., Qiu, X., Du, W., Han, X., Zhou, Q., & Qiu, Y. (2018). Rheological properties of hexadecyl dimethyl amine modified carboxymethyl hydroxyethyl cellulose solutions and its gelling process. Journal of Dispersion Science and Technology, 39(1), 138-142. http://dx.doi.org/10.1080/01932691.2017.1300911.

50 Li, G., Fang, B., Lu, Y., Li, K., Ma, M., Yang, M., Qiu, X., Wang, L., & Liu, Y. (2016). Rheological properties and crosslinking rheo-kinetics of CMHEC/CTAB synergists systems. Journal of Dispersion Science and Technology, 37(12), 1826-1831. http://dx.doi.org/10.1080/01932691.2016.1142450.

51 Liu, Q., Gao, M., Zhao, Y., Li, J., Qu, C., Zhang, J., & Chen, G. (2020). Synthesis and interface activity of a new quaternary ammonium surfactant as an oil/gas field chemical. Tenside, Surfactants, Detergents, 57(1), 90-96. http://dx.doi.org/10.3139/113.110665.

52 Liu, Q., Gao, M., Zhang, J., Zhang, R., Li, J., Chen, S., & Chen, G. (2020). Synthesis and interface activity of cetyltrimethylammonium benzoate. Russian Journal of Physical Chemistry B, 14(1), 73-80. http://dx.doi.org/10.1134/S1990793120010066.
 

64f724b5a953955419425964 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections