Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.2016
Polímeros: Ciência e Tecnologia
Review Article

Modelos de percolação elétrica aplicados para compósitos poliméricos condutores

Percolation electrical models applied to conductive polymers composites

Coelho, Paulo Henrique da Silva Leite; Morales, Ana Rita

Downloads: 1
Views: 1087

Resumo

O presente artigo apresenta a aplicação e adequação dos modelos de percolação elétrica em trabalhos experimentais e teóricos da literatura para compósitos poliméricos condutores. Foi realizado um levantamento das publicações referentes aos modelos estudados para os diferentes tipos de cargas condutoras mais aplicadas na preparação destes compósitos, tais como pós metálicos, grafite, negro de fumo, nanofibras e nanotubos de carbono. A discussão está apresentada quanto à adequação dos modelos ao comportamento dos compósitos na influência das cargas nas propriedades elétricas de matrizes poliméricas.

Palavras-chave

compósitos poliméricos, condutividade elétrica, modelos de percolação.

Abstract

This paper presents the application and adjustment of electrical percolation models in conductive polymer composites. Different models have been proposed for different types of conductive fillers applied in composites preparation, such as metal powders, graphite, black carbon, carbon nanotubes and nanofibers. The discussion was carried out considering the consistency of the model on the behavior of these fillers and their influence on the electrical properties of polymer matrices.

Keywords

polymer composites, electrical conductivity, percolation models.

References

1. Hori, M., Aoki, T., Ohira, Y., Yano, S., Hori, M., Aoki, T., Ohira, Y., & Yano, S. (2001). New type of mechanical damping composites composed of piezoelectric ceramics, carbon Black and epoxy resin. Composites. Part A, Applied Science and Manufacturing, 32(2), 287-290. http://dx.doi.org/10.1016/S1359-835X(00)00141-X.

2. Marcq, F., Demont, P., Monfraix, P., Peigney, A., Laurent, C., Falat, T., Courtade, F., & Jamin, T. (2011). Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives. Microelectronics and Reliability, 51(7), 1230-1234. http://dx.doi.org/10.1016/j.microrel.2011.03.020.

3. Li, C., Liang, T., Lu, W., Tang, C., Hu, X., Cao, M., & Liang, J. (2004). Improving the antistatic ability of polypropylene fibers by inner antistatic agent filled with carbon nanotubes. Composites Science and Technology, 64(13-14), 2089-2096. http://dx.doi.org/10.1016/j.compscitech.2004.03.010.

4. Chung, D. D. L. (2001). Review: electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39(2), 279-285. http://dx.doi.org/10.1016/S0008-6223(00)00184-6.

5. Ryan, M. A., Shevade, A. V., Zhou, H., & Homer, M. L. (2004). Polymer-carbon black composite sensors in an Electronic Nose for air-quality monitoring. MRS Bulletin, 29(10), 714-719. PMid:15991400. http://dx.doi.org/10.1557/mrs2004.208.

6. Al-Saleh, M. H., & Sundararaj, U. (2008). Nanostructured carbon black filled polypropylene/polystyrene blends containing styrene–butadiene–styrene copolymer: Influence of morphology on electrical resistivity. European Polymer Journal, 44(7), 1931-1939. http://dx.doi.org/10.1016/j.eurpolymj.2008.04.013.

7. Ajayan, P. M. (1999). Nanotubes from carbon. Chemical Reviews, 99(7), 1787-1800. PMid:11849010. http://dx.doi.org/10.1021/cr970102g.

8. Mamunya, Y. P., Zois, H., Apekis, L., & Lebedev, E. V. (2004). Influence of pressure on the electrical conductivity of metal powders used as fillers in polymer composites. Powder Technology, 140(1-2), 49-55. http://dx.doi.org/10.1016/j.powtec.2003.11.010.

9. Sonoda, K., Teirikangas, M., Juuti, J., Moriya, Y., & Jantunen, H. (2011). Effect of surface modification on dielectric and magnetic properties of metal powder/polymer nanocomposites. Journal of Magnetism and Magnetic Materials, 323(17), 2281-2286. http://dx.doi.org/10.1016/j.jmmm.2011.04.007.

10. Chen, G. H., Wu, D. J., Weng, W. G., & Yan, W. L. (2001). Preparation of polymer/graphite conducting nanocomposites by intercalation polymerization. Journal of Applied Polymer Science, 82(10), 2506-2513. http://dx.doi.org/10.1002/app.2101.

11. Zou, J. F., Yu, Z. Z., Pan, Y. X., Fang, X. P., & Ou, Y. C. (2002). Conductive mechanism of polymer/graphite conducting composites with low percolation threshold. Journal of Polymer Science. Part B, Polymer Physics, 40(10), 954-963. http://dx.doi.org/10.1002/polb.10141.

12. Zheng, W., & Wong, S. C. (2003). Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Science and Technology, 63(2), 225-236. http://dx.doi.org/10.1016/S0266-3538(02)00201-4.

13. Sun, Y., Luo, S., Watkins, K., & Wong, C. P. (2004). Electrical approach to monitor the thermal oxidation aging of carbon black filled ethylene propylene rubber. Polymer Degradation & Stability, 86(2), 209-215. http://dx.doi.org/10.1016/j.polymdegradstab.2004.04.013.

14. Ramasubramaniam, R., Chen, J., & Liu, H. (2003). Homogeneus carbon nanotubes/polymer composites for electrical applications. Applied Physics Letters, 83(14), 2928-2930. http://dx.doi.org/10.1063/1.1616976.

15. Biercuk, M. J., Llaguno, M. C., Radosavljevic, M., Hyun, J. K., Johnson, A. T., & Fischer, J. E. (2002). Carbon nanotube composites for thermal management. Applied Physics Letters, 80(15), 15-23. http://dx.doi.org/10.1063/1.1469696.

16. Weisenberger, M. C., Grulke, E. A., Jacques, D., Rantell, T. & Andrews, R. (2003). Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube camposite fibers. Journal of Nanoscience and Nanotechnology, 3(6), 535-539. http://dx.doi.org/10.1166/2003.239.

17. Spitalsky, Z., Tasis, D., Papagelis, K., & Galiotis, C. (2010). Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Progress in Polymer Science, 35(3), 357-401. http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003.

18. Ma, P.-C., Siddiqui, N. A., Marom, G. J., & Kim, K. (2010). Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites. Part A, Applied Science and Manufacturing, 41(10), 1345-1367. http://dx.doi.org/10.1016/j.compositesa.2010.07.003.

19. Lux, F. (1993). Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials. Journal of Materials Science, 28(2), 285-301. http://dx.doi.org/10.1007/BF00357799.

20. Bauhofer, W., & Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 69(10), 1486-1498. http://dx.doi.org/10.1016/j.compscitech.2008.06.018.

21. György, I. (2008). Conducting polymers a new era in electrochemistry. Berlin Heidelberg: Springer-Verlag.

22. Hoppe, H., & Sariciftci, N. S. (2004). Organic solar cells: an overview. Journal of Materials Research, 19(7), 1924-1945. http://dx.doi.org/10.1557/JMR.2004.0252.

23. Winey, K. I., Kashiwagi, T., & Mu, M. (2007). Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bulletin, 32(4), 348-353. http://dx.doi.org/10.1557/mrs2007.234.

24. Ounaies, Z., Park, C., Wise, K. E., Siochi, E. J., & Harrison, J. S. (2003). Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology, 63(11), 1637-1646. http://dx.doi.org/10.1016/S0266-3538(03)00067-8.

25. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 356(6348), 56-54. http://dx.doi.org/10.1038/354056a0.

26. Balberg, I., Anderson, C. H., Alexander, S., & Wagner, N. (1984). Excluded volume and its relation to the onset of percolation. Physical Review B: Condensed Matter and Materials Physics, 30(7), 3933-3943. http://dx.doi.org/10.1103/PhysRevB.30.3933.

27. Huang, J. C. (2002). Carbon black filled conducting polymers and polymer blends. Advances in Polymer Technology, 21(4), 299-313. http://dx.doi.org/10.1002/adv.10025.

28. Ou, R., Gupta, S., Parker, C. A., & Gerhardt, R. A. (2006). Fabrication and electrical conductivity of poly(methyl methacrylate) (PMMA)/carbon black (CB) composites: comparison between an ordered carbon black nanowire-like segregated structure and a randomly dispersed carbon black nanostructure. The Journal of Physical Chemistry B, 110(45), 22365-22373. PMid:17091976. http://dx.doi.org/10.1021/jp064498o.

29. Scherzer, S. L., Pavlova, E., Esper, J. D., & Starý, Z. (2015). Phase structure, rheology and electrical conductivity of cocontinuous polystyrene/polymethylmethacrylate blends filled with carbon black. Composites Science and Technology, 1-29. http://dx.doi.org/10.1016/j.compscitech.2015.10.003.

30. Wu, D., Lv, Q., Feng, S., Chen, J., Chen, Y., Qiu, Y., & Yao, X. (2015). Polylactide composite foams containing carbon nanotubes and carbon black: Synergistic effect of filler on electrical conductivity. Carbon, 95, 380-387. http://dx.doi.org/10.1016/j.carbon.2015.08.062.

31. Pelíšková, M., Piyamanocha, P., Prokeš, J., Varga, M., & Sáha, P. (2014). The electrical conductivity of ethylene butyl-acrylate/carbon black composites: The effect of foaming on the percolation threshold. Synthetic Metals, 188, 140-145. http://dx.doi.org/10.1016/j.synthmet.2013.12.008.

32. Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., & Thio, T. (1996). Electrical conductivity of individual carbon nanotubes. Nature, 382(6586), 54-56. http://dx.doi.org/10.1038/382054a0.

33. Sandler, J. K. W., Kirk, J. E., Kinloch, I. A., Shaffer, M. S. P., & Windle, A. H. (2003). Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer, 44(19), 5893-5899. http://dx.doi.org/10.1016/S0032-3861(03)00539-1.

34. Socher, R., Krause, B., Hermasch, S., Wursche, R., & Pötschke, P. (2011). Electrical and thermal properties of polyamide 12 composites with hybrid fillers systems of multiwalled carbon nanotubes and carbon black. Composites Science and Technology, 71(8), 1053-1059. http://dx.doi.org/10.1016/j.compscitech.2011.03.004.

35. Park, S. J., Lim, S. T., Cho, M. S., Kim, H. M., Joo, J., & Choi, H. J. (2005). Electrical properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite. Current Applied Physics, 5(4), 302-304. http://dx.doi.org/10.1016/j.cap.2004.02.013.

36. Zhao, J., Dai, K., Liu, C., Zheng, G., Wang, B., Liu, C., Chen, J. & Shen, C. (2013). A comparation between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Composites Part A: Applied Science and Manucfacturing, 48, 129-136. http://dx.doi.org/10.1016/j.compositesa.2013.01.004.

37. Chen, G. H., Wu, C. L., Weng, W. G., Wu, D. J., & Yan, W. L. (2003). Preparation of polystyrene/graphite nanosheet composite. Polymer, 44(6), 1781-1784. http://dx.doi.org/10.1016/S0032-3861(03)00050-8.

38. Weng, W. G., Chen, G. H., & Wu, D. J. (2005). Transport properties of electrically conducting nylon 6/foliated graphite nanocomposites. Polymer, 46(16), 6250-6257. http://dx.doi.org/10.1016/j.polymer.2005.05.071.

39. Kamat, P. V., Thomas, K. G., Barazzouk, S., Girishkumar, G., Vinodgopal, K., & Meisel, D. (2004). Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a dc field. Journal of the American Chemical Society, 126(34), 10757-10762. PMid:15327336. http://dx.doi.org/10.1021/ja0479888.

40. Chen, Z., Yang, Y. L., Wu, Z. Y., Luo, G., Xie, L. M., Liu, Z. F., Ma, S., & Guo, W. (2005). Electric-field-enhanced assembly of single-walled carbon nanotubes on a solid surface. The Journal of Physical Chemistry B, 109(12), 5473-5477. PMid:16851584. http://dx.doi.org/10.1021/jp045796t.

41. Takahashi, T., Murayama, T., Higuchi, A., Awano, H., & Yonetake, K. (2006). Aligning vapor-grown carbon fibers in polydimethylsiloxane using dc electric or magnetic field. Carbon, 44(7), 1180-1188. http://dx.doi.org/10.1016/j.carbon.2005.10.055.

42. Sun, Y., Bao, H.-D., Guo, Z.-X., & Yu, J. (2009). Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules, 42(1), 459-463. http://dx.doi.org/10.1021/ma8023188.

43. Chen, Y., Wang, S. Pan, F. & Zhang, J. (2014). A numerical study on electrical percolation of polymer-matrix composites with hybrid fillers of carbon nanotubes and carbon black. Journal of Nanomaterials, 2014, 1-9. http://dx.doi.org/10.1155/2014/614797.

44. Wen, M., Sun, X., Su, L., Shen, J., Li, J., & Guo, S. (2012). The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer, 53(7), 1602-1610. http://dx.doi.org/10.1016/j.polymer.2012.02.003.

45. Nofar, M., & Park, C. B. (2014). Poly(lactic acid) foaming. Progress in Polymer Science, 39(10), 1721-1741. http://dx.doi.org/10.1016/j.progpolymsci.2014.04.001.

46. Clingerman, L. M., Weber, E. H., King, J. A., & Schulz, K. H. (2002). Synergistic effect of fillers in electrically conductive nylon 6,6 and polycarbonate based resins. Polymer Composites, 23(5), 911-924. http://dx.doi.org/10.1002/pc.10488.

47. Thongruang, W., Spontak, R. J., & Balik, C. M. (2002). Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber. Polymer, 43(8), 2279-2286. http://dx.doi.org/10.1016/S0032-3861(02)00043-5.

48. Krause, B., Pötschke, P., & Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube–polyamide composites. Composites Science and Technology, 69(10), 1505-1515. http://dx.doi.org/10.1016/j.compscitech.2008.07.007.

49. Kasaliwal, G., Göldel, A., & Pötschke, P. (2009). Influence of processing conditions in smallscale melt mixing and compression molding on the resistivity and morphology of polycarbonate–MWNT composites. Journal of Applied Polymer Science, 112(6), 3494-3509. http://dx.doi.org/10.1002/app.29930.

50. Sumfleth, J., Adroher, X. C., & Schulte, K. (2009). Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. Journal of Materials Science, 44(12), 3241-3247. http://dx.doi.org/10.1007/s10853-009-3434-7.

51. Bokobza, L., Rahmani, M., Belin, C., Bruneel, J. L., & El Bounia, N. E. (2008). Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers. Journal of Polymer Science. Part B, Polymer Physics, 46(18), 1939-1951. http://dx.doi.org/10.1002/polb.21529.

52. Calleja, F. J. B., Bayer, R. K., & Ezquerra, T. A. (1988). Electrical conductivity of polyethylene-carbon-fibre composites mixed with carbon black. Journal of Materials Science, 23(4), 1411-1415. http://dx.doi.org/10.1007/BF01154609.

53. Lee, J. H., Kim, S. K., & Kim, N. H. (2006). Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbonblack-filled high-density polyethylene nanocomposites. Scripta Materialia, 55(12), 1119-1122. http://dx.doi.org/10.1016/j.scriptamat.2006.08.051.

54. Bhattacharya, S. K., editor (1986). Metal-filled polymers (properties and applications). New York: Marcel Dekker.

55. Chen, I.-G., & Johnson, W. B. (1991). Alternating-current electrical properties of random metal-insulator composites. Journal of Materials Science, 26(6), 1565-1576. http://dx.doi.org/10.1007/BF00544665.

56. Carmona, F., & Mouney, C. (1992). Temperature-dependent resistivity and conduction mechanism in carbon particle-filled polymers. Journal of Materials Science, 27(5), 1322-1326. http://dx.doi.org/10.1007/BF01142046.

57. Boiteux, G., Fournier, J., Issotier, D., Scytre, G., & Marichy, G. (1999). Conductive thermoset composites: PTC effect. Synthetic Metals, 102(1-3), 1234-1235. http://dx.doi.org/10.1016/S0379-6779(98)01432-5.

58. Coleman, J. N., Khan, U., Blau, W. J., & Gun’ko, Y. K. (2006). Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon, 44(9), 1624-1652. http://dx.doi.org/10.1016/j.carbon.2006.02.038.

59. Moniruzzaman, M., & Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules, 39(16), 5194-5205. http://dx.doi.org/10.1021/ma060733p.

60. Breuer, O., & Sundararaj, U. (2004). Big returns from small fibers: a review of polymer/carbon nanotube composites. Polymer Composites, 25(6), 630-645. http://dx.doi.org/10.1002/pc.20058.

61. Sahoo, N. G., Rana, S., Cho, J. W., Li, L., & Chan, S. H. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 35(3), 837-867. http://dx.doi.org/10.1016/j.progpolymsci.2010.03.002.

62. Strümpler, R., & Glatz-Reichenbach, J. (1999). Conducting polymers composites. Journal of Electroceramics, 3(4), 329-346. http://dx.doi.org/10.1023/A:1009909812823.

63. Broadbent, S. R., & Hammersley, J. M. (1957). Percolation processes: I. Crystals and mazes. Mathematical Proceedings of the Cambridge Philosophical, 53(3), 629-641. http://dx.doi.org/10.1017/S0305004100032680.

64. Bruggeman, D. A. G. (1935). Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik, 416(7), 636-664. http://dx.doi.org/10.1002/andp.19354160705.

65. Garland, J. C., & Tanner, D. B., editores (1978). Electrical transport and optical properties of inhomogeneous media. New York: AIP.

66. Xue, Q. Z. (2000). Effective-medium theory for two-pases random composites with an interfacial shell. Journal of Materials Science & Technology, 16(4), 367-369. Recuperado em 20 de setembro de 2012, de http://www.jourlib.org/paper/1532329#.VW23gs_BzGc

67. Xue, Q. Z. (2003). A percolation model of metal-insulator composites. Physica B, Condensed Matter, 325(1-4), 195-198. http://dx.doi.org/10.1016/S0921-4526(02)01523-5.

68. Xue, Q. Z. (2004). The influence of particle shape and size on electric conductivity of metal-polymer composites. European Polymer Journal, 40(2), 323-327. http://dx.doi.org/10.1016/j.eurpolymj.2003.10.011.

69. Torquato, S., & Hyun, S. (2001). Effective-medium theory for composite media: realizable single-scale dispersions. Journal of Applied Physics, 89(3), 1725-1729. http://dx.doi.org/10.1063/1.1336523.

70. Kirkpatrick, S. (1973). Percolation and conduction. Reviews of Modern Physics, 45(4), 574-588. http://dx.doi.org/10.1103/RevModPhys.45.574.

71. Zallen, R. A. (1983). The physics of amorphous solids. New York: Wiley.

72. Bao, S. P., Liang, G. D., & Tjong, S. C. (2011). Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly(vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon, 49(5), 1758-1768. http://dx.doi.org/10.1016/j.carbon.2010.12.062.

73. Pike, G. E., & Seager, C. H. (1974). Percolation and conductivity: a computer study. I. Physical Review B: Condensed Matter and Materials Physics, 10(4), 1435-1444. http://dx.doi.org/10.1103/PhysRevB.10.1421.

74. Grunlan, J. C., Mehrabi, A. R., Bannon, M. V., & Bahr, J. L. (2004). Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Advanced Materials, 16(2), 150-153. http://dx.doi.org/10.1002/adma.200305409.

75. Ehrburgerdolle, F., Lahaye, J., & Misono, S. (1994). Percolation in carbon black powders. Carbon, 32(7), 1363-1368. http://dx.doi.org/10.1016/0008-6223(94)90123-6.

76. Etemad, S., Quan, X., & Sanders, N. A. (1986). Geometry‐defined electrical interconnection by a homogeneous medium. Applied Physics Letters, 48(9), 607-609. http://dx.doi.org/10.1063/1.96482.

77. Janzen, J. (1975). On the critical conductive filler loading in antistatic composites. Journal of Applied Physics, 46(3), 966-969. http://dx.doi.org/10.1063/1.321629.

78. Slupkowski, T. (1984). Electrical conductivity of mixtures of conducting and insulating particles. Physica Status Solidi, 83(1), 329-333. http://dx.doi.org/10.1002/pssa.2210830137.

79. Scarisbrick, R. (1973). Electrically conducting mixtures. Journal of Physics. D, Applied Physics, 6(17), 2098-2110. http://dx.doi.org/10.1088/0022-3727/6/17/316.

80. Malliaris, A., & Turner, D. T. (1971). 42 Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders. Journal of Applied Physics, 614-618. http://dx.doi.org/10.1063/1.1660071.

81. Youngs, I. J. (2003). A geometric percolation model for non-spherical excluded volumes. Journal of Physics. D, Applied Physics, 36(26), 738-747. http://dx.doi.org/10.1088/0022-3727/36/6/317.

82. Balberg, I. (1987). Recent developments in continuum percolation. Philosophical Magazine B, 56(6), 991-1003. http://dx.doi.org/10.1080/13642818708215336.

83. Bug, A. L. R., Safran, S. A., & Webman, I. (1985). Continuum percolation of rods. Physical Review Letters, 54(13), 1412-1415. PMid:10031025. http://dx.doi.org/10.1103/PhysRevLett.54.1412.

84. Celzard, A., Mcrae, E., Deleuze, C., Dufort, M., Furdin, G., & Marêché, J. F. (1996). Critical concentration in percolating systems containing a high-aspect-ratio filler. Physical Review B: Condensed Matter and Materials Physics, 53(10), 6209-6214. PMid:9982020. http://dx.doi.org/10.1103/PhysRevB.53.6209.

85. Wu, S.-H., Masaharu, I., Natsuki, T., & Ni, Q.-Q. (2006). Electrical conduction and percolation behavior of carbon nanotubes/UPR nanocomposites. Journal of Reinforced Plastics and Composites, 25(18), 1957-1966. http://dx.doi.org/10.1177/0731684406069923.

86. Berhan, L., & Sastry, A. M. (2007). Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 75(4), 0411201-0411208. http://dx.doi.org/10.1103/PhyRevLett.75.041120. PMid:17500878.

87. Deng, H., Zhang, R., Bilotti, E., Loos, J., & Peijs, T. (2009). Conductive polymer tape containing highly oriented carbon nanofillers. Journal of Applied Polymer Science, 113(2), 742-751. http://dx.doi.org/10.1002/app.29624.

88. Dalmas, F., Dendievel, R., Chazeau, L., Cavaillé, J.-Y., & Gauthier, C. (2006). Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks. Acta Materialia, 54(11), 2923-2931. http://dx.doi.org/10.1016/j.actamat.2006.02.028.

89. Berhan, L., & Sastry, A. M. (2007). Modeling percolation in high-aspect-ratio fiber systems. II. The effect of waviness on the percolation onset. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 75(4), 0411211-0411218. http://dx.doi.org/10.1103/PhyRevLett.75.041121. PMid:17500879.

90. Sun, Y.; Bao, H-D.; Guo, Z.-X. & Yu, J. (2009). Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules, 42(1), 459-463.
 

5b7acd730e88253d74896e54 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections