Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.02717
Polímeros: Ciência e Tecnologia
Original Article

Nafion/sulfonated poly(indene) polyelectrolyte membranes for fuel cell application

Jeanne Leticia da Silva Marques; Ana Paula Soares Zanatta; Mariska Hattenberger; Maria Madalena de Camargo Forte

Downloads: 1
Views: 1293

Abstract

Abstract: Sulfonated poly(indene) (SPInd), with 35% and 45% degree of sulfonation, was blended with Nafion to prepare blended membranes with 10, 15 and 20 wt.% of SPInd. Membranes were evaluated by infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction. Water uptake (WU), ion exchange capacity (IEC) and through-plane proton conductivity were measured. The membranes presented similar thermal stability to Nafion. WU was slightly higher for Nafion/SPInd membranes (19-21% at RT and 40-44% at 90 °C) compared with recast Nafion (16% and 34%, respectively), and IEC values showed a similar trend. Blended Nafion membranes had increased proton conductivity of 2.41 x 10-2 and 2.37 x 10-2 Scm-1 (20 wt. % of SPInd 35% and 45%, respectively), compared with 1.16 x 10-2 Scm-1 for recast Nafion. The results show that the addition of SPInd to Nafion is a potential route towards improving the performance of Nafion in proton conductivity for use in fuel cells devices.

Keywords

blended membrane, Nafion, proton exchange membrane, sulfonated poly(indene)

References

Wang, Y., Chen, K. S., Mishler, J., Cho, S. C., & Adroher, X. C. (2011). A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Applied Energy, 88(4), 981-1007. http://dx.doi.org/10.1016/j.apenergy.2010.09.030.

Kim, H.-I., Cho, C. Y., Nam, J. H., Shin, D., & Chung, T.-Y. (2010). A simple dynamic model for polymer electrolyte membrane fuel cell (pemfc) power modules: parameter estimation and model prediction. International Journal of Hydrogen Energy, 35(8), 3656-3663. http://dx.doi.org/10.1016/j.ijhydene.2010.02.002.

Zhang, L., Chae, S.-R., Hendren, Z., Park, J.-S., & Wiesner, M. R. (2012). Recent advances in proton exchange membranes for fuel cell applications. Chemical Engineering Journal, 204-206, 87-97. http://dx.doi.org/10.1016/j.cej.2012.07.103.

Deluca, N. W., & Elabd, Y. A. (2006). Nafion®/poly(vinyl alcohol) blends: effect of composition and annealing temperature on transport properties. Journal of Membrane Science, 282(1-2), 217-224. http://dx.doi.org/10.1016/j.memsci.2006.05.025.

Chikh, L., Delhorbe, V., & Fichet, O. (2011). (semi-)interpenetrating polymer networks as fuel cell membranes. Journal of Membrane Science, 368(1-2), 1-17. http://dx.doi.org/10.1016/j.memsci.2010.11.020.

Kim, Y. W., Park, J. T., Koh, J. H., Roh, D. K., & Kim, J. H. (2008). Anhydrous proton conducting membranes based on crosslinked graft copolymer electrolytes. Journal of Membrane Science, 325(1), 319-325. http://dx.doi.org/10.1016/j.memsci.2008.07.043.

Saga, S., Matsumoto, H., Saito, K., Minagawa, M., & Tanioka, A. (2008). Polyelectrolyte membranes based on hydrocarbon polymer containing fullerene. Journal of Power Sources, 176(1), 16-22. http://dx.doi.org/10.1016/j.jpowsour.2007.10.017.

Kang, M.-S., Kim, J. H., Won, J., Moon, S.-H., & Kang, Y. S. (2005). Highly charged proton exchange membranes prepared by using water soluble polymer blends for fuel cells. Journal of Membrane Science, 247(1-2), 127-135. http://dx.doi.org/10.1016/j.memsci.2004.09.017.

Pereira, F., Vallé, K., Belleville, P., Morin, A., Lambert, S., & Sanchez, C. (2008). Advanced mesostructured hybrid silica−nafion membranes for high-performance pem fuel cell. Chemistry of Materials, 20(5), 1710-1718. http://dx.doi.org/10.1021/cm070929j.

Liyanage, A. D., Ferraris, J. P., Musselman, I. H., Yang, D.-J., Andersson, T. E., Son, D. Y., & Balkus, K. J. Jr (2012). Nafion-sulfonated dendrimer composite membranes for fuel cell applications. Journal of Membrane Science, 392–393, 175-180. http://dx.doi.org/10.1016/j.memsci.2011.12.018.

Liu, Y., Su, Y.-H., Chang, C.-M., Suryani, Wang, D.-M., & Lai, J.-Y. (2010). Preparation and applications of nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells. Journal of Materials Chemistry, 20(21), 4409-4416. http://dx.doi.org/10.1039/c000099j.

Brum, F. J. B., Zanatta, F. G., Marczynski, E. S., Forte, M. M. C., & Pollet, B. (2014). Synthesis and characterisation of a new sulphonated hydrocarbon polymer for application as a solid proton-conducting electrolyte. Solid State Ionics, 263, 62-70. http://dx.doi.org/10.1016/j.ssi.2014.05.009.

Brum, F. J. B., Laux, F. N., & Forte, M. M. C. (2013). Synthesis of hydrocarbon polymers by cationic polymerization and their thermal properties. Designed Monomers and Polymers, 16(3), 291-301. http://dx.doi.org/10.1080/15685551.2012.747145.

Gupta, D., & Choudhary, V. (2012). Sulfonated poly(ether ether ketone)/ethylene glycol/polyhedral oligosilsesquioxane hybrid membranes for fuel cell applications. International Journal of Hydrogen Energy, 37(7), 5979-5991. http://dx.doi.org/10.1016/j.ijhydene.2011.12.141.

Xing, P., Robertson, G. P., Guiver, M. D., Mikhailenko, S. D., Wang, K., & Kaliaguine, S. (2004). Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. Journal of Membrane Science, 229(1-2), 95-106. http://dx.doi.org/10.1016/j.memsci.2003.09.019.

Hu, J., Baglio, V., Tricoli, V., Aricò, A., & Antonucci, V. (2008). Peo–ppo–peo triblock copolymer/nafion blend as membrane material for intermediate temperature dmfcs. Journal of Applied Electrochemistry, 38(4), 543-550. http://dx.doi.org/10.1007/s10800-007-9471-5.

Teng, X., Sun, C., Dai, J., Liu, H., Su, J., & Li, F. (2013). Solution casting nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application. Electrochimica Acta, 88, 725-734. http://dx.doi.org/10.1016/j.electacta.2012.10.093.

Treekamol, Y., Schieda, M., Robitaille, L., MacKinnon, S. M., Mokrini, A., Shi, Z., Holdcroft, S., Schulte, K., & Nunes, S. P. (2014). Nafion®/odf-silica composite membranes for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 246, 950-959. http://dx.doi.org/10.1016/j.jpowsour.2013.01.178.

Zeng, Q. H., Liu, Q. L., Broadwell, I., Zhu, A. M., Xiong, Y., & Tu, X. P. (2010). Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells. Journal of Membrane Science, 349(1-2), 237-243. http://dx.doi.org/10.1016/j.memsci.2009.11.051.

Yamada, M., & Honma, I. (2006). Biomembranes for fuel cell electrolytes employing anhydrous proton conducting uracil composites. Biosensors & Bioelectronics, 21(11), 2064-2069. http://dx.doi.org/10.1016/j.bios.2006.01.022. PMid:16530401.

Zhong, S., Liu, C., Dou, Z., Li, X., Zhao, C., Fu, T., & Na, H. (2006). Synthesis and properties of sulfonated poly(ether ether ketone ketone) containing tert-butyl groups as proton exchange membrane materials. Journal of Membrane Science, 285(1-2), 404-411. http://dx.doi.org/10.1016/j.memsci.2006.09.016.

Tsai, J.-C., Cheng, H.-P., Kuo, J.-F., Huang, Y.-H., & Chen, C.-Y. (2009). Blended nafion®/speek direct methanol fuel cell membranes for reduced methanol permeability. Journal of Power Sources, 189(2), 958-965. http://dx.doi.org/10.1016/j.jpowsour.2008.12.071.

Zaluski, C., & Xu, G. (1994). Blends of nafion and dow perfluorosulfonated ionomer membranes. Macromolecules, 27(23), 6750-6754. http://dx.doi.org/10.1021/ma00101a012.

Rhee, C. H., Kim, H. K., Chang, H., & Lee, J. S. (2005). Nafion/sulfonated montmorillonite composite: a new concept electrolyte membrane for direct methanol fuel cells. Chemistry of Materials, 17(7), 1691-1697. http://dx.doi.org/10.1021/cm048058q.

Amjadi, M., Rowshanzamir, S., Peighambardoust, S. J., & Sedghi, S. (2012). Preparation, characterization and cell performance of durable Nafion/SiO2 hybrid membrane for high-temperature polymeric fuel cells. Journal of Power Sources, 210, 350-357. http://dx.doi.org/10.1016/j.jpowsour.2012.03.011.

Choi, P., Jalani, N. H., & Datta, R. (2005). Thermodynamics and proton transport in nafion: II. Proton diffusion mechanisms and conductivity. Journal of the Electrochemical Society, 152(3), E123-E130. http://dx.doi.org/10.1149/1.1859814.

Jalani, N. H., Choi, P., & Datta, R. (2005). Teom: a novel technique for investigating sorption in proton-exchange membranes. Journal of Membrane Science, 254(1-2), 31-38. http://dx.doi.org/10.1016/j.memsci.2004.12.020.

Silva, A. L. A., Takase, I., Pereira, R. P., & Rocco, A. M. (2008). Poly(styrene-co-acrylonitrile) based proton conductive membranes. European Polymer Journal, 44(5), 1462-1474. http://dx.doi.org/10.1016/j.eurpolymj.2008.02.025.

Casciola, M., Alberti, G., Sganappa, M., & Narducci, R. (2006). On the decay of nafion proton conductivity at high temperature and relative humidity. Journal of Power Sources, 162(1), 141-145. http://dx.doi.org/10.1016/j.jpowsour.2006.06.023.

Kreuer, K. D. (2000). On the complexity of proton conduction phenomena. Solid State Ionics, 136–137(1-2), 149-160. http://dx.doi.org/10.1016/S0167-2738(00)00301-5.
 

5bb66eea0e8825896bbd3c07 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections