Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/doi/10.1590/0104-1428.02317
Polímeros: Ciência e Tecnologia
Original Article

Chitosan and gum arabic nanoparticles for heavy metal adsorption

Abreu, Flavia Oliveira Monteiro da Silva; Silva, Nilvan Alves da; Sipauba, Mateus de Sousa; Pires, Tamara Fernandes Marques; Bomfim, Tatiana Araújo; Monteiro Junior, Oyrton Azevedo de Castro; Forte, Maria Madalena de Camargo

Downloads: 1
Views: 1350

Abstract

Abstract: Chitosan (CT) is a polysaccharide with the ability to adsorb metals on its surface. In this work, CT-based nanoparticles (NPs) are produced by complex formation with gum arabic (GA) to increase their adsorbent potential for removal of heavy metals in aqueous medium. Adsorption efficiency is evaluated as a function of NP composition and polysaccharide concentration. NPs are sized from 250 to 375 nm at a zeta potential up to -25 mV, suggesting stability to adsorb metals. In particular, CTGA56 and CTGA80 NPs adsorbed a substantially higher amount of copper ions than pure CT. Adsorption kinetics studies showed that the reaction process followed a pseudo second-order model and the adsorption isotherm results fit a Langmuir model, highlighting the monolayer adsorption process with prominent adsorption capacity. These findings indicate the adsorbent potential of CTGA NPs and suggest that these particles can be used for removal of metal ions from contaminated water sources.

Keywords

adsorption, chitosan, nanoparticles, polyelectrolytes

References

Bhatnagar, A., & Sillanpää, M. (2009). Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater-a short review. Advances in Colloid and Interface Science, 152(1-2), 26-38. http://dx.doi.org/10.1016/j.cis.2009.09.003. PMid:19833317.

Wu, S. J., Liou, T. H., Yeh, C. H., Mi, F. L., & Lin, T. K. (2013). Preparation and characterization of porous chitosan-tripolyphosphate beads for copper(II) ion adsorption. Journal of Applied Polymer Science, 127(6), 4573-4580. http://dx.doi.org/10.1002/app.38073.

Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282-291. http://dx.doi.org/10.1016/j.ecolind.2014.08.016.

Dean, J. G., Bosqui, F. L., & Lanouette, K. H. (1972). Removing heavy metals from waste water. Environmental Science & Technology, 6(6), 518-522. http://dx.doi.org/10.1021/es60065a006.

Fomina, M., & Gadd, G. M. (2014). Biosorption: current perspectives on concept, definition and application. Bioresource Technology, 160, 3-14. http://dx.doi.org/10.1016/j.biortech.2013.12.102. PMid:24468322.

Crini, G., & Badot, P.-M. (2008). Application of chitosan, a natural amino polysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Progress in Polymer Science, 33(4), 399-477. http://dx.doi.org/10.1016/j.progpolymsci.2007.11.001.

Modrzejewska, Z., Rogacki, G., Sujka, W., & Zarzycki, R. (2016). Sorption of copper by chitosan hydrogel: Kinetics and equilibrium. Chemical Engineering and Processing, 109, 104-113. http://dx.doi.org/10.1016/j.cep.2016.08.014.

Miretzky, P. J., & Cirelli, A. F. (2009). Hg(II) removal from water by chitosan and chitosan derivatives: a review. Journal of Hazardous Materials, 167(1-3), 10-23. http://dx.doi.org/10.1016/j.jhazmat.2009.01.060. PMid:19232467.

Wan Ngah, W. S., Teong, L. C., & Hanafiah, M. A. K. M. (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 83(4), 1446-1456. http://dx.doi.org/10.1016/j.carbpol.2010.11.004.

Wu, F. C., Tseng, R. L., & Juang, R. S. (2010). A review and experimental verification of using chitosan and its derivatives as adsorbents for selected heavy metals. Journal of Environmental Management, 91(4), 798-806. http://dx.doi.org/10.1016/j.jenvman.2009.10.018. PMid:19917518.

Lui, B., Wang, D., Yu, G., & Meng, X. (2013). Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives — A review. Journal of Ocean University of China, 12(3), 500-508. http://dx.doi.org/10.1007/s11802-013-2113-0.

Li, N., & Bai, R. (2005). Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology, 42(3), 237-247. http://dx.doi.org/10.1016/j.seppur.2004.08.002.

Ali, B. H., Ziada, A., & Blunden, G. (2009). Biological effects of gum arabic: a review of some recent research. Food and Chemical Toxicology, 47(1), 1-8. http://dx.doi.org/10.1016/j.fct.2008.07.001. PMid:18672018.

Yang, J., Han, S., Zheng, H., Dong, H., & Liu, J. (2015). Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydrate Polymers, 123, 53-66. http://dx.doi.org/10.1016/j.carbpol.2015.01.029. PMid:25843834.

Berger, J., Reist, M., Mayer, J. M., Felt, O., & Gurny, R. (2004). Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. European Journal of Pharmaceutics and Biopharmaceutics, 57(1), 35-52. http://dx.doi.org/10.1016/S0939-6411(03)00160-7. PMid:14729079.

Lee, J. W., Kim, S. Y., Kim, S. S., Lee, Y. M., Lee, K. H., & Kim, S. J. (1999). Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly (acrylic acid). Journal of Applied Polymer Science, 73(1), 113-120. http://dx.doi.org/10.1002/(SICI)1097-4628(19990705)73:1<113::AID-APP13>3.0.CO;2-D.

Thinh, N. N., Hanh, P. T. B., Ha, L. T. T., Anh, L. N., Hoang, T. V., Hoang, V. D., Dang, L. H., Khoi, N. V., & Lam, T. D. (2013). Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution. Materials Science and Engineering C, 33(3), 1214-1218. http://dx.doi.org/10.1016/j.msec.2012.12.013. PMid:23827563.

Yu, K., Ho, J., McCandlish, E., Buckley, B., Patel, R., Li, Z., & Shapley, N. C. (2013). Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 425, 31-41. http://dx.doi.org/10.1016/j.colsurfa.2012.12.043.

Abreu, F. O. M. S., Bianchini, C., Forte, M. M. C., & Kist, T. B. L. (2008). Influence of the composition and preparation method on the morphology and swelling behavior of alginate-chitosan hydrogels. Carbohydrate Polymers, 74(2), 283-289. http://dx.doi.org/10.1016/j.carbpol.2008.02.017.

Paula, H. C. B., Sombra, F. M., Cavalcante, R. F., Abreu, F. O. M. S., & Paula, R. C. M. (2011). Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Materials Science and Engineering C, 31(2), 173-178. http://dx.doi.org/10.1016/j.msec.2010.08.013.

Abreu, F. O., Oliveira, E. F., Paula, H. C., & Paula, R. C. (2012). Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydrate Polymers, 89(4), 1277-1282. http://dx.doi.org/10.1016/j.carbpol.2012.04.048. PMid:24750942.

Zhu, A., Chan-Park, M. B., Dai, S., & Li, L. (2005). The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution. Colloids and Surfaces. B, Biointerfaces, 43(3-4), 143-149. http://dx.doi.org/10.1016/j.colsurfb.2005.04.009. PMid:15941653.

Lin, Y. H., Liang, H. F., Chung, C. K., Chen, M. C., & Sung, W. H. (2005). Physically crosslinked alginate/N,O-carboxymethyl chitosan hydrogels with calcium for oral delivery of protein drugs. Biomaterials, 26(14), 2105-2113. http://dx.doi.org/10.1016/j.biomaterials.2004.06.011. PMid:15576185.

Kołodyńska, D. (2012). Adsorption characteristics of chitosan modified by chelating agents of a new generation. Chemical Engineering Journal, 179, 33-43. http://dx.doi.org/10.1016/j.cej.2011.10.028.

Justi, K. C., Fávere, V. T., Laranjeira, M. C., Neves, A., & Peralta, R. A. (2005). Kinetics and equilibrium adsorption of Cu(II), Cd(II), and Ni(II) ions by chitosan functionalized with 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol. Journal of Colloid and Interface Science, 291(2), 369-374. http://dx.doi.org/10.1016/j.jcis.2005.05.017. PMid:15992808.

Chang, Y. C., & Chen, D. H. (2005). Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. Journal of Colloid and Interface Science, 283(2), 446-451. http://dx.doi.org/10.1016/j.jcis.2004.09.010. PMid:15721917.

Hasan, S., Ghosh, T. K., Viswanath, D. S., & Boddu, V. M. (2008). Dispersion of chitosan on perlite for enchancement of copper(II) adsorption capacity. Journal of Hazardous Materials, 152(2), 826-837. http://dx.doi.org/10.1016/j.jhazmat.2007.07.078. PMid:17850957.

Zhou, L., Wang, Y., Liu, Z., & Huang, Q. (2009). Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. Journal of Hazardous Materials, 161(2-3), 995-1002. http://dx.doi.org/10.1016/j.jhazmat.2008.04.078. PMid:18538924.

Wang, W. B., Huang, D. J., Kang, Y. R., & Wang, A. Q. (2013). One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids and Surfaces. B, Biointerfaces, 106, 51-59. http://dx.doi.org/10.1016/j.colsurfb.2013.01.030. PMid:23434691.

Liao, B., Sun, W., Guo, N., Ding, S., & Su, S. (2016). Equilibriums and kinetics studies for adsorption of Ni(II) ion onchitosan and its triethylenetetramine derivative. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 501, 32-41. http://dx.doi.org/10.1016/j.colsurfa.2016.04.043.

Plazinski, W., Rudzinski, W., & Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Advances in Colloid and Interface Science, 152(1-2), 2-13. http://dx.doi.org/10.1016/j.cis.2009.07.009. PMid:19735907.

Itodo, A. U., Itodo, H. U., & Gafar, M. K. (2010). Estimation of specific surface area using langmuir isotherm method. Journal of Environmental Management, 14(4), 141-146. http://dx.doi.org/10.4314/jasem.v14i4.63287.

Dubey, R., Bajpai, J., & Bajpai, A. K. (2016). Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Journal of Environmental Management, 6, 32-44. http://dx.doi.org/10.1016/j.enmm.2016.06.008.

Chen, A. H., Liu, S. C., Chen, C. Y., & Chen, C. Y. (2008). Comparative adsorption of Cu(II), Zn (II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. Journal of Hazardous Materials, 154(1-3), 184-191. http://dx.doi.org/10.1016/j.jhazmat.2007.10.009. PMid:18031930.

Azzam, E. M., Eshaq, G., Rabie, A. M., Bakr, A. A., Abd-Elaal, A. A., El Metwally, A. E., & Tawfik, S. M. (2016). Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution. International Journal of Biological Macromolecules, 89, 507-517. http://dx.doi.org/10.1016/j.ijbiomac.2016.05.004. PMid:27151669.

Wan Ngah, W. S., Teong, L. C., Toh, R. H., & Hanafiah, M. A. K. M. (2013). Comparative study on adsorption and desorption of Cu(II) ions by three types of chitosan-zeolite composites. Chemical Engineering Journal, 223, 231-238. http://dx.doi.org/10.1016/j.cej.2013.02.090.

Zhu, Y., Hu, J., & Wang, J. (2012). Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. Journal of Hazardous Materials, 221-222, 155-161. http://dx.doi.org/10.1016/j.jhazmat.2012.04.026. PMid:22564487.

Vasconcelos, H. L., Guibal, E., Laus, R., Vitali, L., & Fávere, V. T. (2009). Competitive adsorption of Cu(II) and Cd(II) ions on spray-dried chitosan loaded with Reactive Orange 16. Materials Science and Engineering C, 29(2), 613-618. http://dx.doi.org/10.1016/j.msec.2008.10.022.

Liu, D., Li, Z., Zhu, Y., Li, Z., & Kumar, R. (2014). Recycled chitosan nanofibril as an effective Cu(II), Pb (II) and Cd(II) ionic chelating agent: adsorption and desorption performance. Carbohydrate Polymers, 111, 469-476. http://dx.doi.org/10.1016/j.carbpol.2014.04.018. PMid:25037377.
 

5b7c6a0e0e8825c040896e52 polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections