Polímeros: Ciência e Tecnologia
https://app.periodikos.com.br/journal/polimeros/article/5db0569e0e8825f61e61d42c
Polímeros: Ciência e Tecnologia
Original Article

Morphological, thermal and bioactivity evaluation of electrospun PCL/β-TCP fibers for tissue regeneration

Siqueira, Lilian de; Passador, Fábio Roberto; Lobo, Anderson Oliveira; Trichês, Eliandra de Sousa

Downloads: 0
Views: 950

Abstract

Electrospinning is a simple and low-cost way to fabricate fibers. Among the various polymers used in electrospinning, polycaprolactone (PCL) stands out due to its excellent biodegradability and biocompatibility. However, PCL has some limitations such as low bioactivity, hydrophobic surface, and long in vivo degradation. Calcium phosphate ceramics have been recognized as an attractive biomaterial. They are bioactive and osteoinductive, and some are even quite biodegradable. Different contents of particles of beta-tricalcium phosphate (β-TCP) were incorporated in polymer matrix to form fibers of PCL/β-TCP composites by electrospinning for possible application in tissue regeneration. The presence of β-TCP particles promoted some changes in the thermal properties of the fibers. The immersion of PCL/β-TCP 8 wt-% fibers in simulated body fluid (SBF) caused the formation of a denser and homogeneous apatite layer on its surface.

Keywords

electrospinning; fibers; polycaprolactone; scaffolds; tricalcium phosphate

References

1 Zhou, H., Lawrence, J. G., & Bhaduri, S. B. (2012). Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review. Acta Biomaterialia , 8(6), 1999-2016. http://dx.doi.org/10.1016/j.actbio.2012.01.031. PMid:22342596. 

2 Sun, B., Long, Y. Z., Zhang, H. D., Li, M. M., Duvail, J. L., Jiang, X. Y., & Yin, H. L. (2014). Advances in three- dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science39(5), 862-890. http://dx.doi.org/10.1016/j.progpolymsci.2013.06.002. 

3 Hassan, M. I., Sun, T., & Sultana, N. J. (2014). Fabrication of Nanohydroxyapatite/Poly(caprolactone) composite microfibers using electrospinning technique for tissue engineering applications. Journal of Nanomaterials2014(65), 1-7. http://dx.doi.org/10.1155/2014/209049. 

4 Garkhal, K., Verma, S., Jonnalagadda, S., & Kumar, N. (2007). Fast degradable poly (L -lactide- co - e -caprolactone) microspheres for tissue engineering : synthesis, characterization, and degradation behavior. Journal of Polymer Science. Part A, Polymer Chemistry45(13), 2755-2764. http://dx.doi.org/10.1002/pola.22031. 

5 Zhang, Y., Lim, C. T., Ramakrishna, S., & Huang, Z. M. (2005). Recent development of polymer nanofibers for biomedical and biotechnological applications. Journal of Materials Science. Materials in Medicine16(10), 933-946. http://dx.doi.org/10.1007/s10856-005-4428-x. PMid:16167102. 

6 Ma, P. X. (2004). Scaffolds for tissue fabrication. Materials Today7(5), 30-40. http://dx.doi.org/10.1016/S1369-7021(04)00233-0. 

7 Holzapfel, B. M., Reichert, J. C., Schantz, J. T., Gbureck, U., Rackwitz, L., Nöth, U., Jakob, F., Rudert, M., Groll, J., & Hutmacher, D. W. (2012). How smart do biomaterials need to be? A translational science and clinical point of view. Advanced Drug , 65(4), 581-603. http://dx.doi.org/10.1016/j.addr.2012.07.009. PMid:22820527. 

8 Kawachi, E. Y., Bertran, C. A., Reis, R. R., & Alves, O. L. (2000). Biocerâmicas: tendências e perspectivas de uma área interdisciplinar. Quimica Nova23(4), 518-522. http://dx.doi.org/10.1590/S0100-40422000000400015. 

9 Lu, L., Zhang, Q., Wootton, D., Chiou, R., Li, D., Lu, B., Lelkes, P., & Zhou, J. (2012). Biocompatibility and biodegradation studies of PCL/β-TCP bone tissue scaffold fabricated by structural porogen method. Journal of Materials Science. Materials in Medicine23(9), 2217-2226. http://dx.doi.org/10.1007/s10856-012-4695-2. PMid:22669285. 

10 Ribeiro, W. A. R., No., Pereira, I. H. L., Ayres, E., De Paula, A. C. C., Averous, L., Góes, A. M., Oréfice, R. L., & Bretas, R. E. S. (2012). Influence of the microstructure and mechanical strength of nanofibers of biodegradable polymers with hydroxyapatite in stem cells growth. Electrospinning, characterization and cell viability. Polymer Degradation & Stability97(10), 2037-2051. http://dx.doi.org/10.1016/j.polymdegradstab.2012.03.048. 

11 Hassan, M. I., Sultana, N., & Hamdan, S. (2014). Bioactivity assessment of poly(ɛ-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application. Journal of Nanomaterials , 2014, 1-6. http://dx.doi.org/10.1155/2014/573238. 

12 Park, C. H., Kim, E. K., Tijing, L. D., Amarjargal, A., Pant, H. R., Kim, C. S., & Shon, H. K. (2014). Preparation and characterization of LA/PCL composite fibers containing beta tricalcium phosphate (β-TCP) particles. Ceramics International , 40(3), 5049-5054. http://dx.doi.org/10.1016/j.ceramint.2013.10.016. 

13 Kim, M. S., & Kim, G. H. (2014). Highly porous electrospun 3D polycaprolactone/β-TCP biocomposites for tissue regeneration. Materials Letters120, 246-250. http://dx.doi.org/10.1016/j.matlet.2014.01.083. 

14 Siqueira, L., Passador, F. R., Costa, M. M., Lobo, A. O., & Sousa, E. (2015). Influence of the addition of β-TCP on themorphology, thermal properties and cell viability of poly (lactic acid) fibers obtained by electrospinning. Materials Science and Engineering C52, 135-143. http://dx.doi.org/10.1016/j.msec.2015.03.055. PMid:25953550. 

15 Pereira, R. B., & Morales, A. R. (2014). Estudo do comportamento térmico e mecânico do PLA modificado com aditivo nucleante e modificador de impacto. Polímeros: Ciência e Tecnologia24(2), 198-202. http://dx.doi.org/10.4322/polimeros.2014.042. 

16 Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., & Yamamuro, T. (1990). Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. Journal of Biomedical Materials Research24(6), 721-734. http://dx.doi.org/10.1002/jbm.820240607. PMid:2361964. 

17 Sasmazel, H. T. (2011). Novel hybrid scaffolds for the cultivation of osteoblast cells. International Journal of Biological Macromolecules49(4), 838-846. http://dx.doi.org/10.1016/j.ijbiomac.2011.07.022. PMid:21839769. 

18 Vert, M., Li, S. M., Spenlehauer, G., & Guerin, P. (1992). Bioresorbability and biocompatibility of aliphatic polyesters. Journal of Materials Science. Materials in Medicine , 3(6), 432-446. http://dx.doi.org/10.1007/BF00701240. 

19 Pereira, C. S., Gomes, M. E., Reis, R. L., & Cunha, A. (1999). Hard cellular materials in the human body: properties and production of foamed polymers for bone replacement. In J. F. Sadoc , & N. Rivier (Eds.), Foams and emulsion (pp. 354, 193-206). USA: Springer Netherlands. http://dx.doi.org/10.1007/978-94-015-9157-7_12. 

20 Baji, A., Wong, S. C., Liu, T., Li, T., & Srivatsan, T. S. (2007). Morphological and x-ray diffraction studies of crystalline hydroxyapatite-reinforced polycaprolactone. Journal of Biomedical Materials Research. Part B, Applied Biomaterials,81B(2), 343-350. http://dx.doi.org/10.1002/jbm.b.30671. PMid:17022054. 

5db0569e0e8825f61e61d42c polimeros Articles
Links & Downloads

Polímeros: Ciência e Tecnologia

Share this page
Page Sections