Association between physical activity, physical fitness and stress with bone mineral density of elderly: a narrative review
Rejane Maria Cruvinel Cabral, Iransé Oliveira-Silva, Gislane Ferreira de Melo
Abstract
Introduction: Aging is a physiological process that decreases muscle, skeletal and autonomic capacity, which increases the likelihood of developing chronic diseases. In addition to these losses, stress can be an aggravating factor to senescence and may be indirectly identified by increased cortisol. Researches indicates that a good amount of daily physical activity and adequate levels of physical fitness can minimize age-related losses and minimize the impact on bone mineral density (BMD). Objective: to present how the level of physical activity, physical fitness and stress are associated with elderly people’s BMD. Methods: Pubmed and Medline databases were searched for scientific articles in Portuguese and English. The descriptors were: Stress, Physical Activity, Physical Fitness, Elderly and Bone Mineral Density. The research and the study of the scientific articles were carried out from October to December 2018. Conclusion: The level of moderate physical activity improves physical fitness and increases BMD. While high levels of cortisol contribute to decreased BMD.
Keywords
References
1. Ilmarinen J. The ageing Workforce challenges for occupational health. Occupational Medicine Phisiology. 2016: 362-364.
2. Ghasemi M, Rezaeidehaghani A, Mehrabi T. Investigating the effect of education based on need to prevent falling during activities of daily living among the elderlies referring to health centers of Isfahan. Iran J Nurs Midwifery Res. 2016; 21(4): 430–435.
3. Brasil ministério da saúde. Envelhecimento e saúde da pessoa idosa. Série As Normas e Manuais Técnicos. Caderno de Atenção Básica. 2007;19. Brasília.
4. Vaz F C, Molina G E, Porto L G G, Port A L et al. Cortisol e Atividade Física: será o estresse um indicador do nível de atividade física espontânea e capacidade física em idosos? Brasília Med. 2013; 50(2): 143-152.
5. Instituto Brasileiro de Geografia e Estatística – IBGE, Estudos e Pesquisas – Síntese de Indicadores Sociais. 2013; 32.
6. Ko Y, Ha H, Bae Y H, Lee W. Effect of space balance 3D treaining using visual feedback on balance and mobility in acute stroke patients. J. Phys. Ther. Sci, 2015; 27: 1593–1596.
7. Furtado G E, Uba-chupel M, Carvalho H M, Souza N R, Ferreira J P, Teixeira A M et al. Effects of a chair - yoga exercises on stress hormone levels, daily life activities falls end physical fitness in institutionalized older adults. Complementary therapies in Clinical Practice. 2016; 24: 123-129.
8. Fried L P, Tangen C M, Walston J, Newman A B, Hirsch C, Gottdiener J et al. Frailty in Older Adults: Evidence for a Phenotype Journal of Gerontology: Medical Sciences. 2001; 56A(3): M146–M156.
9. Xue Qian-li. The Frailty Syndrome: Definition and Natural History. Clin Geriatr Med. 2011; 27(1): 1–15.
10. Costa T B, Neri A L. Medidas de Atividade Física e Fragilidade em Idosos: dados do FIBRA Campinas, São Paulo, Brasil. Cad. Saúde Pública. 2077; 27(8): 1537-1550.
11. Bibas L, Levi M, Bendayan M, Mullie L, Forman D E, Afilalo J. Therapeutic Interventions for Frail Elderly Patients: Part I. Published Randomized Trials. Progressin Cardiovascular Disease. 2014; S57: 134-143.
12. Foong Y C, Chherawala N, Aitken D, Scott D, Winzenberg T, Jones G. Acelerometer determined physical activity muscle mass, and leg strength in community- dwelling older adults. Jornal of Cachexia, Sarcopenia and Muscle. 2016; 7: 25-283.
13. Baker L D, Frank L L, Foster-schubert K, Green P S, Wilkinson C W, Mctiernan A et al. Effects of Aerobic Exercise on Mild Cognitive Impairment: A Controlled Trial. 2010.
14. Jerez-roig J, Medeiros J F, Fidélis K N M, Lima Filho B F, Oliveira N P D, Andrade F L J P et al. Activity Limitations in Brazilian Institutionalized Older Adults. J Geriatr Phys Ther. 2016; 00: 1-9.
15. Lee I, Ha C, Kang H. Association of sarcopenia and physical activity with femur bone mineral density in elderly women. J Exerc Nutrition Biochem.2016; 20(1): 023-028.
16. Minetto, M, Reimondo G, Osella G, Ventura M, Angeli A, Terzolo M. Bone loss is more severe in primary adrenal than in pituitary-dependent Cushing’s syndrome Osteoporos Int. 2004; 15: 855.
17. Chiodini I, Vainicher, C E, Morelli, V, Palmieri S, Cairoli E, Salcuni A S et al. Endogenous subclinical hypercortisolism and bone: a clinical review European Journal of Endocrinology. 2016; 175: R265–R82.
18. Moraes H, Deslandes A, Cevada T, Souza A C F M, Laks J. O efeito do exercício físico nos níveis de cortisol em idosos: uma revisão sistemática. Rev Bras Ativ Fis e Saúde. 2012; 17(4): 314-320.
19. Reynolds R M, Dennison E M, Walker B R, Syddall H E, Wood P J, Andrew R et al. Cortisol secretion and rate of bone loss in a population – based cohort of elderly men and women. Calcif Tissue Int. 2005; 77: 134-138.
20. Elefiteriou F, Campbell P, Ma Y. Control of bone remodeling by the peripheral sympathetic nervous system, Calcif Tissue Int. 2014; 94(1): 140-51.
21. Cadore E L, Brentano M A, Lhullier F L R, Kruel L. F. M. Efeitos da atividade física na densidade mineral óssea e na remodelação do tecido ósseo. Rev Bras Med Esporte. 2005; 11(6): 373-379.
22. Demontiero O, Vidal C, Duque G. Aging and bone loss: new insights for the clinician. Ther Adv Musculoskel Dis. 2012; 4(2): 61–76.
23. Borba V Z C, Kulak, C A M, Castro M L. Controle Neuroendócrino da Massa Óssea: Mito ou Verdade? Arq Bras Endocrinol Metab. 2003; 47(4): 453- 457.
24. Fonseca H, Gonçalves D M, Coriolano H J, Duarte J A. Bone quality: the determinants of bone strength and fragility. Sports Med. 2014; 44(1): 37-53.
25. Lukert B P, Raisz L G. Glucocorticoid-Induced Osteoporosis: Pathogenesis and Management. Annals of Internal Medicine. 1990; 112: 352-364.
26. Papathanasiou I V, Tsaras K, Neroliatsiou A, Roupa A. Stress: Concepts, theoretical models and nursing interventions. American Journal of Nursing Science. 2015; 4(2-1): 45-50.
27. Ancelin, M L, Scali J, Norton J, Ritchie K, Dupuy A M, Chaudieu I et al. Heterogeneity in HPA axis dysregulation and serotonergic vulnerability to depression. Psychoneuroendocrinology. 2017; 77: 90–94.
28. Farinatti P T V. Teorias Biológicas do envelhecimento: do genético ao estocástico. Rev. Bras Med Esporte. 2002; 8(4): 129-138.
29. Goncharova N D, Marenin V Y, Oganyan T E. Aging of the hypothalamic‐ pituitary‐adrenal axis in nonhuman primates with depression‐like and aggressive behavior. AGING. 2010; 2(11): 854-866.
30. Souza M B C, Silva H P A, Coelho, N L G. Resposta ao estresse: I. Homeostase e teoria da alostase. Estudos de Psicologia. 2015; 20(1): 2-11.
31. Rodriguez J M, Alvarez M M, Henriquez S, Llanos M N, Troncoso R. Glucocorticoid resistance in chronic diseases. Steroids. 2016; 115: 182–192.
32. Karsenty G. The mutual dependence between bone and gonads. Journal of Endocrinology. 2012; 213: 107-114.
33. Funaro M, Bolyakov A, Gimenez E, Herman M, Paduch D A. Low Testosterone an Important Predictor of Low Mineral Bone Density in Young Men Own Experience and a Review of Literature. Advances in Sexual Medicine. 2013; 3: 19-33.
34. Ferrucci L, Baroni M, Ranchelli A, Lauretani F, Maggio M, Mecocci P, Ruggiero C. Interaction Between Bone and Muscle in Older Persons with Mobility Limitations, Curr Pharm Des. 2014; 20(19): 3178–3197.
35. Lee JM, Colangelo L A, Schwartz J E, Yano Y, Siscovick D S, Seeman T et al. Associations of cortisol/testosterone and cortisol/sex hormone-binding globulin ratios with atherosclerosis in middle-age women Atherosclerosis. 2016; 248: 203e209.
36. Giné-Garriga M, Roqué-fíguls M, Coll-planas L, Sitjà-robert M, Salva A. Physical Exercise Interventions for Improving Performance-Based Measures of Physical Function in Community-Dwelling, Frail Older Adults: A Systematic Review and Meta-Analysis. Archives of Physical Medicine and Rehabilitation. 2014; 95: 753-69.
37. Labra C, Guimarães-pinheiro C, Maseda A, Lorenzo T, Millián-calenti J C. Effects of physical exercise interventions in frail older adults: a systematic review of randomized controlled trials. BMC Geriatrics, 2015; 15: 154-160.
38. American College of Sports Medicine. Med Sci Sports Exerc. 2004; 36(3): 533-53.
39. Oliveira-Silva I, Gonçalves H R, Venâncio P E M, Tolentino G P, Lima W A. Influence of resistance training in quality of life, body composition, and physical performance of community-dwelling elderly women. Manual Therapy, Posturology & Rehabilitation Journal. 2017;15: 1-5.
40. Matsudo S M, Matsudo V K R, Barros Neto T L. Impacto do envelhecimento nas variáveis antropométricas, neuromotoras e metabólicas da aptidão física. Rev. Bras. Ciên. e Mov. 2000; 8(4): 21-32.
41. Virtuoso J F, Balbé G P, Hermes J M, Amorim Junior E E, Fortunato A R, Mazo G Z. Força de preensão manual e aptidões físicas: um estudo preditivo com idosos ativos. Rev. Bras. Geriatr. Gerontol, 2014; 17(4): 775-784.
42. Rantanen T, Guralnik J N, Rantala RS, Leveille S, Simonsick E M, Ling S et al. Disability, Physical Activity, and Muscle Strength in Older Women: The Women’s Health and Aging Study Arch Phys Med Rehabil. 1999; 80: 130-5.
43. Paoli A, Bianco A. What Is Fitness Training? Definitions and Implications: A Systematic Review Article. Iran J Public Health. 2015; 44(5): 602-614.
44. Westropp N M M, Gill T K, Taylor A W, Bohannon R W, Hill C L. Hand Grip Strength: age and gender stratified normative data in a population-based study, BMC. 2011; 4:127.
45. Huang W N W, Perera S, Vanswearingen J, Studenski S. Performance measures predict onset of activity of daily living difficulty in communitydwelling older adults. J Am Geriatr Soc. 2010 58(5): 844–852, 2010.
46. Zarzeczny R, Szołtysik A N, Polak A, Maliszewski J, Kiełtyka A, Matyja B et al. Aging effect on the instrumented Timed-Up-and-Go test variables in nursing home women aged 80–93 years. Biogerontology. 2017;18: 651–663.
47. Beauchet O, Fantino B, Allali G, Muir SW, Odasso M M, Annweiler C. Timed Up and Go test and risk of falls in older adults: a systematic review. J Nutr Health Aging. 2011; 15: 933–938.
48. Savva G M, Donoghue O A, Horgan F, O’regan C, Cronin H, Kenny RA. Using timed up-and-go to identify frail members of the older population. J Gerontol A Biol Sci Med Sci. 2013; 68(4): 441–446.
49. Martinez B P, Gomes I B, Oliveira C S, Ramos I R, Rocha M D M, Junior L A F et al. Accuracy of the Timed Up and Go test for predicting sarcopenia in elderly hospitalized patients. Clinics. 2015; 70(5): 369–372, 2015.
50. Ciubean A D, Ungur R A, Irsay L, Ciortea V M, Borda I M, Onac I et al. Health-related quality of life in Romanian postmenopausal women with osteoporosis and fragility fractures. Clinical Interventions in Aging. 2018; 13: 2465–2472, 2018.
51. Varela S, Cancela J M, Martinez M S, Ayán C. Self-Paced Cycling Improves Cognition on Institutionalized Older Adults Without Known Cognitive Impairment: A 15-Month Randomized Controlled Trial, Journal of Aging and Physical Activity. 2018; 1; 26(4): 614-23.