Lower limb symmetry index (LLSI) pre- and post-reconstruction of the ACL: a controlled study
Luma Soares Lustosa, Nyck Douglas Claro Pereira, José Jamacy de Almeida Ferreira, Palloma Rodrigues de Andrade, Heleodório Honorato dos Santos
Abstract
Background: The anterior cruciate ligament (ACL) lesion causes a deficit in joint stability and mobility, trophism and muscular strength, generating asymmetries between the lower limbs. Objective: To verify the effect of a physiotherapeutic protocol on the Lower Limb Symmetry Index (LLSI) and the correlation between strength and EMGs, pre and post reconstruction of the ACL. Methods: Twenty subjects (10 ACLrg + 10 CONTg) were evaluated regarding isometric force and electrical activity of knee extensors, knee flexors and hip abductors. Results: A significant increase (P<0.01) in knee extension and flexion strength and hip abduction strength were observed both for the affected limb and non-affected limb. Regarding the LLSI, a significant increase was observed for knee extension and hip abduction movements in the pre- and post-treatment comparison, and between ACLrg X CONTg (P<0.01) for the knee extension movement in the pre-reconstruction phase of the ACL. A very strong correlation (r=0.945; P<0.01) was also observed between the LLSI strength X EMGs during knee extension, pre- and post-reconstruction surgery. Conclusions: Six months after reconstruction of the ACL, there was an increase in strength and EMG activity of the knee flexor, knee extensor and hip abductor muscles, leveling the LLSI between ACLrg and the CONTg, however, with a significant correlation between the two variables (strength X EMGs) for only one of the three movements (knee extension).
Keywords
References
1. Ataides G, Oliveira M, Lobo Junior P, Araújo R, Henrique P, Lima R et al. Resultados clínicos e funcionais da cirurgia de reconstrução do LCA contralateral em médio prazo. Universitas: Ciên Saúde, 2013; 11(1):19-28.
2. Boden BP, Dean GS, Feagin Júnior JA , Garrett Júnior WE. Mechanisms of anterior cruciate ligament injury. J Orthop. 2000; 23(6):573-8.
3. Yu B, Kirkendall DT, Garrett WE. Anterior cruciate ligament injuries in female athletes: anatomy, physiology and motor control. Sports Med Arthrosc Rev. 2002; 10(1):58-68.
4. Bassi FAA, Borges APO, Quemelo PRV. Análise eletromiográfica do músculo reto femoral após lesão do ligamento cruzado anterior: um relato de caso. Rev Ter Man. 2010; 8(S1):97-100.
5. Dambros C, Martimbianco ALC, Polachini LO, Lahoz GL, Chamlian TR, Cohen M. Efetividade da crioterapia após reconstrução do Ligamento Cruzado Anterior. Acta Ortop Bras. 2012; 20(5):285-90.
6. Aragão FA, Schäfer GS, Albuquerque CE, Vituri RF, Azevedo FM, Bertolini GRF. Eficiência neuromuscular dos músculos vasto lateral e bíceps femoral em indivíduos com lesão de ligamento cruzado anterior. Rev Bras Ortop. 2015; 50(2):180–5.
7. Hewett T, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005; 33(4):492-501.
8. Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B et al. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med. 2010; 38(10):1968- 78.
9. Hartigan E, Axe MJ, Snyder-Mackler L. Perturbation training prior to ACL reconstruction improves gait asymmetries in noncopers. J Orthop Res. 2009; 27(6):724-9.
10. Marchetti PH, Bucchianico EG, Amore T, Nardi PSM, Gali JC, Uchida MC. Desempenho dos membros inferiores após reconstrução do ligamento cruzado anterior. Motriz. 2012; 18(3):441-8.
11. Rabita G, Pérot C, Lensel-Corbiel G. Differential effect of knee extension isometric training on the different muscles of the quadriceps femoris in humans. Eur J Appl Physiol. 2000; 83:531-8.
12. McCarthy JP, Pozniak MA, Agre JC. Neuromuscular adaptations to concurrent strength and endurance training. Med Sci Sports Exerc. 2002; 34(3):511-9.
13. Santos HH, Hanashiro DN, Ávila MA, Camargo PR, Oliveira AB, Salvini TF. Efeito do treino isocinético excêntrico sobre a razão I/Q do torque e EMGs em sujeitos saudáveis. Rev Bras Med Esporte. 2014; 20(3):227-32.
14. Judge LW, Moreau C, Burke JR. Neural adaptations with sport-specific resistance training in highly skilled athletes. J Sports Sci. 2003; 21:419-27.
15. Andersen LL, Andersen JL, Magnusson SP, Aagaard P. Neuromuscular adaptations to detraining following resistance training in previously untrained subjects. Eur J Appl Physyiol. 2005; 93:511-8.
16. Earl JE, Schmitz RJ, Arnold BL. Activation of the VMO and VL during dynamic mini-squat exercises with and without isometric hip adduction. J Electromyogr Kinesiol. 2001; 11(6):381-6.
17. Linnamo V, Strojnik V, Komi PV. EMG power spectrum and features of the superimposed M-wave during voluntary eccentric and concentric actions at different activation levels. Eur J Appl Physiol. 2002; 86(6):534–40.
18. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000; 10(5):361–74.
19. Stegeman DF, Hermens HJ. Standards for surface electromyography: the European project “Surface EMG for non-invasive assessment of muscles (SENIAM)” 2007:108-12. Retrieved from: www.biopac.com/knowledgebase/where-do-i-place-electrodes-sensors-transducers/
20. Carpes FP, Mota CB, Faria IE. On the bilateral asymmetry during running and cycling e A review considering leg preference. Phys Ther Sport. 2010; 11(4):136-42.
21. Araújo AGF, Barbosa GM, Freire RA, Andrade PR, Ferreira JJA, Santos HH. Fidedignidade das medidas inter e intratestes com goniômetro universal e artrômetro podálico da amplitude ativa de eversão e inversão do tornozelo. Fisioter Pesq. 2014; 21(4):339-45.
22. Luz BS. Análise da simetria em tarefas motoras em sujeitos submetidos à reconstrução do ligamento cruzado anterior. [Dissertação]. São Paulo (SP). Instituto de Psicologia da Universidade de São Paulo, 2009.
23. Lobato DFM. Avaliação subjetiva da função do joelho da sensibilidade proprioceptiva antes e após a reconstrução do ligamento cruzado anterior [Dissertação]. São Carlos (SP). Universidade Federal de São Carlos (UFSC), 2007.
24. Noronha Neta, MI. Correlação entre torque, equilíbrio e função do joelho após reconstrução do LCA. [Dissertação]. Natal (RN). Universidade Federal do Rio Grande do Norte (UFRN), 2009.
25. Kaminska E, Piontek T, Wiernicka M, Cywinska-Wasilewska G, Lewandowski J, Lochynski D. Differences in isokinetic strength of the knee extensors and flexors in men with isolated and combined cruciate-ligament knee injury. J Sport Rehabil. 2015; 24(3):268-277.
26. Brasileiro JS, Pinto OM, Ávila MA, Salvini TF. Functional and morphological changes in the quadriceps muscle induced by eccentric training after ACL reconstruction. Rev Bras Fisioter. 2011; 15(4):284-90.
27. Bond CW, Cook SB, Swartz EE, Laroche DP. Asymmetry of lower-extremity force and muscle cctivation during knee extension and functional tasks. Muscle & Nerve, 2017; 56(3):495-54.
28. Palmieri RM, Ingersoll CD, Hoffman MA, Cordova ML, Porter DA, Edwards JE et al. Arthrogenic muscle response to a simulated ankle joint effusion. Br J Sports Med. 2004; 38(1):26–30.
29. Bonsfills N, Gómez-Barrena E, Raygoza JJ, Núñez A. Loss of neuromuscular control related to motion in the acutely ACL-injured knee: an experimental study. Eur J Appl Physiol. 2008; 104(3):567–77.
30. Courtney C, Rine RM, Kroll P. Central somato sensory changes and altered muscles energies in subjects with anterior cruciate ligament deficiency. Gait Post. 2005; 22(1):69–74.