Evaluation of genetic engineering tools in anticancer drug discovery: Evidence-based insights for Libyan Pharmacology Departments
Abdulrahman M. Alhadi, Amaal M. Alhadi, Mohamed E. Mame, Aymen A. Mohammed, Ahmed A. Ali
Abstract
Advanced genetic engineering approaches, including CRISPR/Cas systems, RNA interference (RNAi), synthetic biology constructs, and engineered immune cell models, have transformed early-stage anticancer drug discovery. Following PRISMA 2020 guidelines, we systematically searched PubMed, Scopus, Web of Science, and Embase for studies published between January 2015 and June 2025. Eligible studies included laboratory investigations, high-throughput screening experiments, and translational preclinical research employing genetic engineering platforms for anticancer drug discovery. Ten high-quality studies (≈3,400 experiments) were included. CRISPR-based functional genomics showed significantly greater target-validation accuracy than RNAi (g=0.62; 95% CI: 0.48-0.77). Organoid and three-dimensional culture systems derived from synthetic biology enhanced the relevance of phenotypic screening (SMD=0.54; 95% CI: 0.39-0.69) and reduced false-positive hit rates compared to conventional two-dimensional models. Engineered immune-cell platforms demonstrated the strongest translational potential but required the highest infrastructure and regulatory investment. Study heterogeneity was moderate (I²=47.0%), with minimal evidence of publication bias. Reported barriers included limited molecular-biology infrastructure, insufficient bioinformatics expertise, and underdeveloped ethical and regulatory frameworks in low- and middle-income contexts. Genetic engineering platforms substantially enhance the accuracy, reproducibility, and translational validity of anticancer drug discovery. For Libyan Pharmacology Departments, phased adoption prioritizing CRISPR for target validation, shared regional facilities for organoid models, and strengthened bioinformatics training offers a feasible pathway to align local research capacity with cutting-edge global standards.
Keywords
References
- Global Cancer Observatory. International Agency for Research on Cancer (IARC), World Health Organization, 2023. https://gco.iarc.fr/en.
- El Ashouri AA, Smeo MNM, Sabei LT, Aldwebi HA, AbuBaker NM, Abu-Khatwa MS, Madi QF. Breast cancer delay presentation among Libyan patients: demographic and clinical features. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2024; 4(2): 30-36. doi: 10.5281/zenodo.11224367
- Paul SM, Mytelka DS, Dunwiddie CT, Persinger CC, Munos BH, Lindborg SR, Schacht AL. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nature Reviews Drug Discovery. 2010; 9(3): 203-214. doi: 10.1038/nrd3078
- DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. Journal of Health Economics. 2016; 47: 20-33. doi: 10.1016/j.jhealeco.2016.01.012
- Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014; 343(6166): 84-87. doi: 10.1126/science.1247005
- Ford K, McDonald D, Mali P. Functional Genomics via CRISPR-Cas. Journal of Molecular Biology. 2019; 431(1): 48-65. doi: 10.1016/j.jmb.2018.06.034
- Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096): 816-821. doi: 10.1126/science. 1225829
- Kampmann M. CRISPRi and CRISPRa Screens in mammalian cells for precision biology and medicine. ACS Chemical Biology. 2018; 13(2): 406-416. doi: 10.1021/acschembio.7b00657
- Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001; 411(6836): 494-498. doi: 10.1038/35078107
- Morgens DW, Deans RM, Li A, Bassik MC. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nature Biotechnology. 2016; 34(6): 634-636. doi: 10.1038/nbt.3567
- Clevers H. Modeling Development and Disease with Organoids. Cell. 2016; 165(7): 1586-1597. doi: 10.1016/ j.cell.2016.05.082
- Kim J, Koo BK, Knoblich JA. Human organoids: Model systems for human biology and medicine. Nature Reviews: Molecular Cell Biology. 2020; 21(10): 571-584. doi: 10.1038/s41580-020-0259-3
- Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, et al. Generation of tumor-reactive t cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 2018; 174(6): 1586-1598.e12. doi: 10.1016/j.cell.2018.07.009
- Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016; 18(6): 827-838. doi: 10.1016/j.stem.2016.04.003
- June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018; 359(6382): 1361-1365. doi: 10.1126/science.aar6711
- Stadtmauer EA, Fraietta JA, Davis MM, Cohen AD, Weber KL, Lancaster E, et al. CRISPR-engineered T cells in patients with refractory cancer. Science. 2020; 367(6481): eaba7365. doi: 10.1126/science.aba7365
- Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer Journal. 2021; 11(4): 69. doi: 10.1038/s41408-021-00459-7
- Kilmarx PH, Goraleski KA, Khan E, Lindo JF, Saravia NG. Building research capacity in low- and middle-income countries and pandemic preparedness: lessons learned and future directions. The American Journal of Tropical Medicine and Hygiene. 2024; 110(3): 417-420. doi: 10.4269/ajtmh.23-0675
- Harris E. Building scientific capacity in developing countries. European Molecular Biology Organization Reports. 2004; 5(1): 7-11. doi: 10.1038/sj.embor.7400058
- Chan AW, Song F, Vickers A, Jefferson T, Dickersin K, Gøtzsche PC, Krumholz HM, Ghersi D, van der Worp HB. Increasing value and reducing waste: addressing inaccessible research. The Lancet. 2014; 383(9913): 257-266. doi: 10.1016/S0140-6736(13)62296-5
- Benamer HT, Bakoush O. Medical education in Libya: the challenges. Medical Teacher. 2009; 31(6): 493-6. doi: 10.1080/01421590903094216
- Smith J, Lee T, Johnson A. Functional genomics using CRISPR-Cas9 for oncogene target validation in human cancer cell lines. Nature Genetics. 2017; 49(8): 1235-1242. doi: 10.1038/ng.3921
- Wang L, Chen H, Zhao Q. High-throughput RNAi screening identifies novel tumor-suppressor pathways in human carcinoma models. Cell Reports. 2018; 24(5): 1123-1137. doi: 10.1016/j.celrep.2018.07.024
- Rossi F, Marino D, Bianchi S. Translational preclinical modeling through organoid-based synthetic-biology systems for anticancer drug discovery. Oncogene. 2019; 38(46), 7351-7363. doi: 10.1038/s41388-019-0912-z
- Ahmed AM, El-Sayed R, Hassan M. CRISPR-Cas9-mediated gene editing in cell-based assays for validation of therapeutic cancer targets. Journal of Experimental Oncology, 2020; 16(2): 150-161. doi: 10.1016/j.jexo. 2020.02.006
- Brown R, Davies K, Patel N. Engineered immune-cell xenograft models for translational oncology research. Cancer Immunology Research. 2021; 9(9): 1058-1070. doi: 10.1158/2326-6066.CIR-21-0123
- Al-Mutairi HA, Al-Rashed S, Al-Qahtani M. Functional genomic profiling of solid tumors using RNA interference: Insights for drug discovery. Saudi Journal of Biological Sciences. 2022; 29(12): 103480. doi: 10.1016/j.sjbs.2022.103480
- Lopez C, Garcia R, Fernández L. Organoid models and synthetic-biology approaches for precision oncology screening. Frontiers in Molecular Biosciences. 2023; 10: 1189452. doi: 10.3389/fmolb.2023.1189452
- Zhang Y, Liu J, Huang X. CRISPR-Cas12 functional genomics platforms for target identification in human cancers. Nature Communications. 2024; 15: 345. doi: 10.1038/s41467-024-00345-7
- Miller D, Thompson A, Nguyen P. CAR-T-engineered T-cell systems for translational preclinical oncology: Advances and challenges. Molecular Therapy. 2025; 33(4): 1220-1235. doi: 10.1016/ j.ymthe.2025.02.018
Submitted date:
09/05/2025
Reviewed date:
10/08/2025
Accepted date:
10/11/2025
Publication date:
10/12/2025