Phytochemical characterization and radical-scavenging activity of solvent fractions from corn silk
Mahjoba S. Munayr, Zamzam A. B. Alshreef
Abstract
This study aimed to quantify the total phenolic content (TPC) and total flavonoid content (TFC) in corn silk (Zea mays L.) extracts and evaluate their antioxidant potential using the DPPH radical-scavenging assay. The findings revealed that polar solvents were the most effective in extracting phenolic and flavonoid compounds, yielding the highest concentrations of these compounds. These results underscore the significance of solvent polarity in enhancing the recovery of antioxidant-rich phytochemicals from corn silk. The propanol extract showed the highest levels of both phenolic (274.82±151.11 μg/g) and flavonoid (193.0±61.0 μg/g) compounds, followed by the ethyl acetate extract. In contrast, the chloroform extract yielded the lowest concentrations of these bioactive constituents. The propanol extract showed the highest levels of both phenolic (274.82±151.11 μg/g) and flavonoid (193.0±61.0 μg/g) compounds, followed by the ethyl acetate extract. In contrast, the chloroform extract yielded the lowest concentrations of these bioactive constituents. dependent antioxidant activity. The propanol extract was superior to the others in its free radical scavenging activity, achieving the highest inhibition rate of 82.13% at a concentration of 46.69 mg/mL. The ethyl acetate extract showed 78.07% inhibition, and the chloroform extract showed 75.81%. These results are consistent with the calculated IC50 values, which indicate that the propanol extract had the highest antioxidant efficacy. The findings establish a strong correlation between the high content of phenolics and flavonoids in corn silk extracts and their elevated antioxidant activity. The propanol extract proved to be the most effective among the tested extracts, making it a promising candidate for use as a natural source of antioxidant compounds.
Keywords
References
- Maksimović Z, Malencic Đ, Kovacevic N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresource Technology. 2005; 96(8): 873-877. doi: 10.1016/j.biortech.2004.09.006
- Maksimovic ZA, Kovacevic N. Preliminary assay on the antioxidative activity of Maydis stigma extracts. Fitoterapia. 2003; 74: 144-147. doi: 10.1016/s0367-326x(02)00311-8
- Wan RWI, Nurhanan, AR, Farid C, Ghazali S, Mohsin SJ. Effect of sodium hydroxide (NaOH) and sodium hypochlorite (NaHClO) on morphology and mineral concentration of Zea mays hairs (Corn silk). Annals of Microscopy. 2010; 10: 4-10. Corpus ID: 119089357.
- Shirkav A, Nazif HR. Numerical study on the effects of blood perfusion and body metabolism on the temperature profile of human forearm in hyperthermia conditions. Journal of Thermal Biology. 2019; 84: 339-350. doi: 10.1016/j.jtherbio.2019.07.023
- Hasanudin K, Hashim P, Mustafa S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules. 2012; 17(8): 9697-9715. doi: 10.3390/molecules17089697
- Wang C, Zhang T, Liu J, Lu S, Zhang C, Wang E, et al. Subchronic toxicity study of corn silk with rats. Journal of Ethnopharmacology. 2011; 137(1): 36-43. doi: 10.1016/j.jep.2011.03.021
- Gwendlin V, Induja TA, Manoj J, Shivasamy MS. Recent trends in effective utilization of by-product of corn. Indian Journal of Science. 2015; 22: 18-26. Corpus ID: 89237705.
- Amgad A, Rizwan B, Jabeen S. The effect of methanolic extract of corn silk in gentamicin induced acute renal injury in rats' model. Pakistan BioMedical Journal. 2022; 5(1) 308-312. doi: 10.54393/pbmj.v5i1.259
- Jyoti S, Baskaran S, Sawinder K, Prasad R, Vikas N. Phytochemical analysis and characterization of corn silk (Zea mays, G5417). Agronomy. 2022; 12(4): 777. doi: 10.3390/agronomy12040777
- Amreen F, Agrawal P, Singh PP. Herbal option for diabetes: An overview. Asian Pacific Journal of Tropical Disease. 2012; 2: S536-S544. doi: 10.1016/s2222-1808(12)60216-3
- Chen S, Chen H, Tian J, Wang Y, Xing L, Wang J. Chemical modification, antioxidant and αamylase inhibitory activities of corn silk polysaccharides. Carbohydrate Polymers. 2013; 98(1): 428-437. doi: 10.1016/j.carbpol. 2013.06.011
- Liang Z, Yang Y, Zhanyong W. Extraction optimization of polysaccharides from corn silk and their antioxidant activities in vitro and in vivo. Frontiers in Pharmacology. 2021; 12: 738150. doi: 10.3389/fphar.2021.738150
- Han KSS, Win KT, Chit MT. Evaluation of antimicrobial, antioxidant, antidiabetic activities, and acute toxicity of Elephantopus scaber L. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2025; 5(2): 87-95. doi: 10.5281/zenodo.15365040
- Hoque M, Hasan NM, Saikh S. Using common medicinal plants to treat high blood pressure: An updated overview and emphasis on antihypertensive phytochemicals. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2025; 5(3): 1-10. doi: 10.5281/zenodo.15788473
- Nkollo MI, Rosemary RN, Efejene IO, Olele CH, Iwelumo BC, Chibuogwu C, Aisuodionoe EM. Phytochemistry and pharmacological insights into Kalanchoe pinnata: A brief review. Mediterranean Journal of Medical Research. 2025; 2: 26-31. doi: 10.5281/zenodo.15368110
- Ehigie S, Oviawe PA, Owolabi BJ, Michael OT, Oghomwen RO, Aselu CV, Iyekowa O. Comparative phytochemical and mineral analysis of methanol extract of Teifairia occidentalis (Fluted pumpkin) leaves, stem, and roots. Mediterranean Journal of Medical Research. 2025; 02: 65-70. doi: 10.5281/zenodo.15653316
- Bazine HA, Shlaka MA, Sherif FM. A neuropharmacological profile of lycium schweinfurthii (solanaceae) methanolic extract in mice. Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2023; 3(1): 43-50. doi: 10.5281/zenodo.7771364
- Osamwonyi I, Iyekowa O, Ebengho MI, Edema MO, Oviawe AP, Momoh SM, et al. Chemical characterizations and anti-sickling potential of methanol extract of Justicia carnea (flamingo plant). Mediterranean Journal of Pharmacy and Pharmaceutical Sciences. 2024; 4(3): 65-75. doi: 10.5281/zenodo.13759785
- Guevara P, Perez-Amador MC, Zuniga B, Snook M. Flavones in corn silks and resistance to insect attacks. Phyton-International Journal of Experimental Botany. 2000; 69: 151-156. doi: Nil.
- Ren S, Qiao Q, Ding XL. Antioxidative activity of five flavones glycosides from corn silk (Stigma maydis). Czech Journal of Food Sciences. 2013; (31)2: 148-155. doi: 10.17221/194/2012-CJFS
- Ren S-C, Liu Z, Ding X-L. Isolation and identification of two novel flavone glycosides from corn silk (Stigma maydis). Journal of Medical Plants Research. 2009; 3(12): 1009-1015. doi: 10.5897/JMPR.9000839
- Hu Q-L, Zhang L-J, Li Y-N, Ding Y-J, Li F-L. Purification and anti-fatigue activity of flavonoids from corn silk. International Journal of Physical Sciences. 2010; 5(4): 321-326. doi: 10.5897/IJPS.9000469
- Byun S, Lee KW, Jung SK, Lee EJ, Hwang MK, Lim SH, Bode AM, Lee HJ, Dong Z. Luteolin inhibits protein kinase Cε and c-Src activities and UVB-induced skin cancer. Cancer Research. 2010; 70(6): 2415-2423. doi: 10.1158/0008-5472.CAN-09-4093
- Zilic S, Jankovic M, Basic Z, Vancetovic J, Maksimovic V. Antioxidant activity, phenolic profile, chlorophyll and mineral matter content of corn silk (Zea mays L): Comparison with medicinal herbs. Journal of Cereal Science. 2016; 69: 363-370. doi: 10.1016/j.jcs.2016.05.003
- Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Medica. 2008; 74(14): 1667-1677. doi: 10.1055/s-0028-1088314
- Ueda H, Yamazaki C, Yamazaki M. Luteolin as an anti-inflammatory and anti-allergic constituent of perilla frutescens. Biological and Pharmaceutical Bulletin. 2002; 25(9): 1197-1202. doi: 10.1248/bpb.25.1197
- Lee MY, Lee NH, Jung D, Lee JA, Seo CS, Lee H, Kim JH, Shin HK. Protective effects of allantoin against ovalbumin (OVA)-induced lung inflammation in a murine model of asthma. International Immuno-pharmacology. 2010; 10(4): 474-480. doi: 10.1016/j.intimp.2010.01.008
- Khanpour E, Modarresi M. Quantitative analysis of allantoin in Iranian corn silk. Research Journal of Pharmacognosy. 2017; 4: 16-16. doi: Nil.
- Silva MM, Santos MR, Caroço G, Rocha R, Justino G, Mira L. Structure-antioxidant activity relationships of flavonoids: A re-examination. Free Radical Research. 2002; 36(11): 1219-1227. doi: 10.1080/198-1071576021 000016472
- Matsuda H, Wang T, Managi H, Yoshikawa M. Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorganic and Medicinal Chemistry. 2003; 11(24): 5317-5323. doi: 10.1016/j.bmc.2003.09.045
- Jung YJ, Park JH, Cho JG, Seo KH, Lee DS, Kim YC, et al. Lignan and flavonoids from the stems of Zea mays and their anti-inflammatory and neuroprotective activities. Archives of Pharmaceutical Research. 2015; 38(2): 178-185. doi: 10.1007/s12272-014-0387-4
- Fergyson LR. Role of plant polyphenols in genomic stability. Mutation Research. 2001; 475(1-2): 89-111. doi: 10.1016/s0027-5107(01)00073-2
- Katsube K, Iwashita T, Tsushida K, Yamaki M, Kobori M. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. Journal of Agricultural and Food Chemistry. 2003; 51(1): 68-75. doi: 10.1021/jf025781x
- Loo G. Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation. The Journal of Nutritional Biochemistry. 2003; 14(2): 64-73. doi: 10.1016/s0955-2863(02)00251-6
- Adom KK, Liu RH. Antioxidant activity of grains. Journal of Agricultural and Food Chemistry. 2002; 50(21): 6182-6187. doi: 10.1021/jf0205099
- Dewanto XW, Liu RH. Processed sweet corn has higher antioxidant activity. Journal of Agricultural and Food Chemistry. 2002; 50(17): 4959-4964. doi: 10.1021/jf0255937
- Snook ME, Widstrom NW, Wiseman BR, Byrne PF, Harwood JS, Costello CE. New C-4″- hydroxy derivatives of Maysin and 3′-methoxymaysin isolated from corn silks (Zea mays). Journal of Agricultural and Food Chemistry. 1995; 43(10): 2740-2745. doi: 10.1021/jf00058a036
- Miyazawa M, Hisama M. Antimutagenic activity of phenyl-propanoids from clove (Syzygium aromaticum). Journal of Agricultural and Food Chemistry. 2003; 51(22): 6413-6422. doi: 10.1021/jf030247q
- Wang CK, Lee WH. Separation, characteristics, and biological activities of phenolics in areca fruit. Journal of Agricultural and Food Chemistry. 1996; (44)8: 2014-2019. doi: 10.1021/jf950611o
- Lewer P, Bandurski RS. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays. Phytochemistry. 1978; 26(5): 1247-1250. doi: 10.1016/s0031-9422(00)81790-2
- Jana ZS, Jankovic M, Basić Z, Vancetovic J, Maksimovic V. Antioxidant activity, phenolic profile, chlorophyll and mineral matter content of corn silk (Zea mays L): Comparison with medicinal herbs. Journal of Cereal Science. 2016; 69: 363-370. doi: 10.1016/j.jcs.2016.05.003
- Srinivasan M, Sudheer AR, Menon VP. Ferulic acid: Therapeutic potential through its antioxidant property. Journal of Clinical Biochemistry and Nutrition. 2007; 40(2): 92-100. doi: 10.3164/jcbn.40.92
- Bento-Silva A, Vaz PMC, do - Rosário BM. Relevance, structure and analysis of ferulic acid in maize cell walls. Food Chemistry. 2018; 246: 360-378. doi: 10.1016/j.foodchem.2017.11.012
- Kumar N, Pruthi V. Potential applications of ferulic acid from natural sources. Biotechnology Reports. (Amsterdam, Holland). 2014; 4: 86-93. doi: 10.1016/j.btre.2014.09.002
- Mancuso C, Santangelo R. Ferulic acid: Pharmacological and toxicological aspects. Food Chemistry and Toxicology. 2014; 65: 185-195. doi: 10.1016/j.fct.2013.12.024
- El-Ghorab A, El-Massry KF, Shibamoto T. Chemical composition of the volatile extract and antioxidant activities of the volatile and non-volatile extracts of Egyptian corn silk (Zea mays L.). Journal of Agricultural and Food Chemistry. 2007; 55(22): 9124-9127. doi: 10.1021/jf071646e
- Mukherjee D, Pata M, Bank S, Gorain S, Pramonik P, Pal J, et al. Stigmasterol in health and diseases: A review. International Journal of Pharmacognosy and Chinese Medicine. 2022; 6(2): 1-9. doi: 10.23880/ipcm-16000231
- Habtermariam S. Extract of corn silk (Stigma maydis) inhibits tumor necrosis factor -α- and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression. Planta Medica. 1998; 64(4): 314-318. doi: 10.1055/s-2006-957441
- Ke CL, Deng FS, Chuang CY, Lin CH. Antimicrobial actions and applications of Chitosan. Polymers. 2021; 13(6): 904. doi: 10.3390/polym13060904
- Avelelas F, Horta A, Pinto LFV, Marques SC, Nunes PM, Pedrosa R, Leandro SM. Antifungal and antioxidant properties of Chitosan polymers obtained from non-traditional Polybius henslowii sources. Marine Drugs. 2019; 17(4): 239. doi: 10.3390/md17040239
- Azuma K, Osaki T, Minami S, Okamoto Y. Anticancer and anti-inflammatory properties of Chitin and Chitosan Oligosaccharides. Journal of Functional Biomaterials. 2015; 6(1): 33-49. doi: 10.3390/jfb6010033
- Ueno H, Mori T, Fujinaga T. Topical formulations and wound healing applications of chitosan. Advanced Drug Delivery Reviews. 2001; 52: 105-115. doi: 10.1016/s0169-409x(01)00189-2
- Shih PY, Liao YT, Tseng YK, Deng FS, Lin CH. A Potential antifungal effect of Chitosan against Candida Albicansis mediated via the inhibition of SAGA complex component expression and the subsequent alteration of cell surface integrity. Frontiers in Microbiology. 2019; 10: 602. doi: 10.3389/fmicb.2019.00602
- Sarkar S, Das D, Dutta P, Kalita J, Wann SB, Manna P. Chitosan: A Promising Therapeutic Agent and Effective Drug Delivery System in Managing Diabetes Mellitus. Carbohydrate Polymers. 2020; 247: 116594. doi: 10.1016/j.carbpol.2020.116594
- Prajapati ND, Purohit SS, Sharma AK, Kumar T. A Handbook of medicinal plants: A complete source book. 2nd ed. Jodhpur, India Agrobios. 2009. ISBN 13: 9788177541342.
- Nessa F, Ismail Z, Mohamed N. Antimicrobial activities of extracts and flavonoid glycosides of corn silk (Zea mays L). International Journal of Biotechnology for Wellness Industries. 2012; 1: 115-121. doi: 10.6000/1927-3037/2012.01.02.02
- Dardouk F, Arandi H, Makharzch M (2019). Extraction of corn silk and its applications in healing and cosmetics. A Graduation Project Report Submitted to the Faculty of Engineering and Information Technology, Chemical Engineering Department, An-Najah National University, Nablus, Palestine. 22-23. doi: Nil.
- Wang Y, Mao J, Zhang, M, Liu, L, Zhu, Y, Gu M, et al. An umbrella insight into the phytochemistry features and biological activities of corn silk: A narrative review. Molecules. 2024; 29(4): 891. doi. 10.3390/molecules 29040891
- Nurhanan AR, Rosli WIW. Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn. Journal of King Saud University - Science. 2014; 26(2): 119-127. doi: 10.1016/ j.jksus.2013.11.002
- Sadh PK, Chawla P, Duhan JS. Fermentation approach on phenolic, antioxidants and functional properties of peanut press cake. Food Bioscience. 2018; 22: 113-120. doi: 10.1016/j.fbio.2018.01.011
- Singh J, Kaur S, Rasane P. Evaluation of the nutritional and quality characteristics of black carrot fortified instant noodles. Current Nutrition in Food Science. 2018; 14: 1-8. doi: 10.2174/1573401313666170724115548
- Stuart BH. Infrared Spectroscopy: Fundamentals and applications; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2004. ISBN: 978-0-470-85428-0.
Submitted date:
08/06/2025
Reviewed date:
09/05/2025
Accepted date:
09/09/2025
Publication date:
09/10/2025