Jornal Vascular Brasileiro
https://app.periodikos.com.br/journal/jvb/article/doi/10.1590/1677-5449.202301062
Jornal Vascular Brasileiro
Original Article

Peripheral tissue perfusion in individuals with and without type 2 diabetes mellitus and its associations with type 2 diabetes: a cross-sectional study

Perfusão tecidual periférica em indivíduos com e sem diabetes mellitus tipo 2 e suas associações com diabetes tipo 2: estudo transversal

Valéria Cristina de Faria; Juliana Simões de Alencar Fernandes; Tulio Ericles de Oliveira Cunha; Guilherme de Azambuja Pussieldi; Danielle Aparecida Gomes Pereira

Downloads: 0
Views: 43

Abstract

Background: Early recognition of peripheral tissue perfusion deficits can minimize secondary complications of peripheral arterial disease in individuals with diabetes.

Objectives: To compare parameters of peripheral tissue perfusion in the leg at rest and during and after progressive effort between non-diabetics and individuals with type 2 diabetes and normal ankle brachial index values, as well as to evaluate the factors associated with peripheral tissue perfusion in the leg in individuals with type 2 diabetes during progressive effort.

Methods: This cross-sectional study included 31 individuals with type 2 diabetes and 31 non-diabetics. Anthropometric measurements and physical activity levels were assessed in all individuals. Peripheral tissue perfusion was analyzed using near-infrared spectroscopy during an arterial occlusion maneuver and the Incremental Shuttle Walking Test.

Results: During progressive effort, the tissue oxygen saturation level was lower in the type 2 diabetes group (type 2 diabetes, 58.74 [56.27–61.74] than the non-diabetic group, 62.15 [59.09–66.49]; p = 0.005). There were significant correlations between tissue oxygen saturation during progressive effort and physical activity level (p < 0.0001; r = -0.681), total body fat percentage (p = 0.001; r = 0.590), segmental body fat percentage (p < 0.0001; r = 0.616), total skeletal muscle mass (p < 0.0001; r = -0.628), and segmental skeletal muscle mass (p = 0.001; r = -0.592).

Conclusions: Individuals with type 2 diabetes and normal ankle-brachial index values had worse tissue perfusion during progressive effort than non-diabetics, and there was an association between perfusion, physical activity level, and body composition in the type 2 diabetes group.

Keywords

leg; microcirculation; near-infrared spectroscopy; type 2 diabetes mellitus

Resumo

Contexto: O reconhecimento precoce dos déficits de perfusão tecidual periférica pode minimizar as complicações secundárias da doença arterial periférica em indivíduos com diabetes.

Objetivos: Comparar parâmetros de perfusão tecidual periférica do membro inferior em repouso e durante e após esforço progressivo entre indivíduos com diabetes tipo 2 (DM2) com índice tornozelo-braquial (ITB) normal e indivíduos sem diabetes. Além disso, avaliar os fatores associados à perfusão tecidual periférica do membro inferior em indivíduos com DM2 durante esforço progressivo.

Métodos: Estudo transversal que avaliou 62 indivíduos: 31 com DM2 e 31 sem diagnóstico de diabetes (SDD). Em ambos os grupos, foram avaliadas medidas antropométricas e níveis de atividade física. A perfusão tecidual periférica foi analisada por espectroscopia de infravermelho próximo durante a manobra de oclusão arterial e o Incremental Shuttle Walking Test.

Resultados: O nível de saturação tecidual de oxigênio (StO2) durante o esforço progressivo foi menor no grupo DM2 (DM2: 58,74 [56,27–61,74]; SDD: 62,15 [59,09–66,49]; p = 0,005). Houve correlações significativas entre o nível de StO2 durante o esforço progressivo e nível de atividade física (p < 0,0001; r = -0,681), percentual de gordura corporal total (p = 0,001; r = 0,590), percentual de gordura corporal segmentar (p < 0,0001; r = 0,616), massa muscular esquelética total (MME) (p < 0,0001; r = -0,628) e MME segmentar (p = 0,001; r = -0,592).

Conclusões: Indivíduos com DM2 com ITB normal apresentaram pior perfusão tecidual durante o esforço progressivo em comparação aos indivíduos com SDD. Essa pior perfusão foi associada ao nível de atividade física e à composição corporal nos indivíduos com DM2.

Palavras-chave

membro inferior; microcirculação; espectroscopia de luz próxima ao infravermelho; diabetes mellitus tipo 2

References

1 International Diabetes Federation. IDF diabetes atlas. 10th ed. Brussels: IDF; 2021.

2 American Diabetes Association. Standards of Medical Care in Diabetes - 2022. J Clin Appl Res Educ. 2022;45(1):S1-264.

3 Siah MC, Abramowitz S. Perfusion assessment and treatment in the diabetic patient. Clin Podiatr Med Surg. 2019;36(3):361-70. http://doi.org/10.1016/j.cpm.2019.03.001. PMid:31079603.

4 Manevska N, Stojanoski S, Gjorceva DP, Todorovska L, Vavlukis M, Majstorov V. Tissue-muscle perfusion assessed by one day 99m Tc-MIBI rest-dipyridamol scintigraphy in non-diabetic and diabetic patients. Rev Esp Med Nucl Imagen Mol. 2018;37(3):141-5. http://doi.org/10.1016/j.remnie.2017.11.018. PMid:29605629.

5 Oliveira JEPD, Montenegro RM Jr, Vencio S. Diretrizes da Sociedade Brasileira de Diabetes 2017-2018. São Paulo: Clannad; 2017.

6 Conte SM, Vale PR. Peripheral arterial disease. Heart Lung Circ. 2018;27(4):427-32. http://doi.org/10.1016/j.hlc.2017.10.014. PMid:29150158.

7 Silva PJ Fo, Teodoro ECM, Pereira ECA, Miranda VCR. Prevalência e fatores associados à doença arterial periférica em pessoas com diabetes tipo 2. Fisioter Mov. 2021;34:e34122. http://doi.org/10.1590/fm.2021.34122.

8 Yang S, Zhu L, Han R, Sun L, Li J, Dou J. Pathophysiology of peripheral arterial disease in Diabetes Mellitus. J Diabetes. 2017;9(2):133-40. http://doi.org/10.1111/1753-0407.12474. PMid:27556728.

9 Eiken FL, Pedersen BL, Bækgaard N, Eiberg JP. Diagnostic methods for measurement of peripheral blood flow during exercise in patients disease: a systematic review. Int Angiol. 2019;38(1):62-9. http://doi.org/10.23736/S0392-9590.18.04051-8. PMid:30860342.

10 Sales ATN, Fregonezi GAF, Silva AGCB, et al. Identification of peripheral arterial disease in diabetic patients and its association with quality of life, physical activity and body composition. J Vasc Bras. 2015;14(1):46-54. http://doi.org/10.1590/1677-5449.20140043.

11 Dipla K, Triantafyllou A, Grigoriadou I, et al. Impairments in microvascular function and skeletal muscle oxygenation in women with gestational diabetes mellitus: links to cardiovascular disease risk factors. Diabetologia. 2017;60(1):192-201. http://doi.org/10.1007/s00125-016-4129-7. PMid:27722775.

12 Gustafsson P, Crenshaw AG, Edmundsson D, Toolanen G, Crnalic S. Muscle oxygenation in Type 1 diabetic and non-diabetic patients with and without chronic compartment syndrome. PLoS One. 2017;12(10):e0186790. http://doi.org/10.1371/journal.pone.0186790. PMid:29059243.

13 McClatchey PM, Bauer TA, Regensteiner JG, Schauer IE, Huebschmann AG, Reusch JE. Dissociation of local and global skeletal muscle oxygen transport metrics in type 2 diabetes. J Diabetes Complications. 2017;31(8):1311-7. http://doi.org/10.1016/j.jdiacomp.2017.05.004.

14 Mohler ER III, Lech G, Supple GE, Wang H, Chance B. Impaired exercise-induced blood volume in Type 2 Diabetes with or without Peripheral Arterial Disease measured by continuous-wave Near-Infrared Spectroscopy. Diabetes Care. 2006;29(8):1856-9. http://doi.org/10.2337/dc06-0182. PMid:16873792.

15 Pedersen BL. BÆKgaard N, Quistorff B. Mitochondrial dysfunction in calf muscles of patients with combined peripheral arterial disease and diabetes type 2. Int Angiol. 2017;36(5):482-95. http://doi.org/10.23736/S0392-9590.17.03824-X. PMid:28291304.

16 Faria VC, Oliveira LFL, Ferreira AP, et al. Reference values for triceps surae tissue oxygen saturation by near-infrared spectroscopy. Physiol Meas. 2022;43(10):105005. http://doi.org/10.1088/1361-6579/ac9452. PMid:36137541.

17 Hulley SB, Cummings SR, Browner WS, Grady D, Newman TB. Designing clinical research: an epidemiologic approach. Philadelphia: Lippincott Williams & Wilkins; 2013.

18 Gerhard-Herman M, Gornik H, Barrett C, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;135(12):e726-79. http://doi.org/10.1161/CIR.0000000000000470. PMid:27840333.

19 International Society for Advancement of Kinanthropometry. International standards for anthropometric assessment. Potchefstroom: ISAK; 2001.

20 Souza AC, Magalhaes LDC, Teixeira-Salmela LF. Adaptação transcultural e analise das propriedades psicometricas da versao brasileira do Perfil de Atividade Humana. Cad Saude Publica. 2006;22(12):2623-36. http://doi.org/10.1590/S0102-311X2006001200012. PMid:17096041.

21 McLay KM, Nederveen JP, Pogliaghi S, Paterson DH, Murias JM. Repeatability of vascular responsiveness measures derived from near-infrared spectroscopy. Physiol Rep. 2016;4(9):e12772. http://doi.org/10.14814/phy2.12772. PMid:27147496.

22 Singh SJ, Morgan MDL, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax. 1992;47(12):1019-24. http://doi.org/10.1136/thx.47.12.1019. PMid:1494764.

23 Cunha-Filho IT, Pereira DAG, Carvalho AMB, Campedeli L, Soares M, Sousa Freitas J. The reliability of walking tests in people with claudication. Am J Phys Med Rehabil. 2007;86(7):574-82. http://doi.org/10.1097/PHM.0b013e31806de721. PMid:17581292.

24 Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):153-6. http://doi.org/10.1016/S0735-1097(00)01054-8. PMid:11153730.

25 Manfredini F, Lamberti N, Malagoni AM, et al. Reliability of the vascular claudication reporting in diabetic patients with peripheral arterial disease: a study with near-infrared spectroscopy. Angiology. 2015;66(4):365-74. http://doi.org/10.1177/0003319714534762. PMid:24830417.

26 Kravari M, Angelopoulos E, Vasileiadis I, Gerovasili V, Nanas S. Monitoring tissue oxygenation during exercise with near infrared spectroscopy in diseased populations: a brief review. Int J Ind Ergon. 2010;40(2):223-7. http://doi.org/10.1016/j.ergon.2009.02.002.

27 Bauer TA, Reusch JEB, Levi M, Regensteiner JG. Skeletal muscle deoxygenation after the slowed microvascular blood flow kinetics. Diabetes Care. 2007;30(11):2880-5. http://doi.org/10.2337/dc07-0843. PMid:17675540.

28 Barker T, Spencer P, Kirkman E, Lambert A, Midwinter M. An evaluation of the normal range of StO2 measurements at rest and following a mixed exercise protocol. J R Army Med Corps. 2015;161(4):327-31. http://doi.org/10.1136/jramc-2014-000312. PMid:25168755.

29 Conte MS, Pomposelli FB, Clair DG, et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: Management of asymptomatic disease and claudication. J Vasc Surg. 2015;61(3, Suppl):2S-41S. http://doi.org/10.1016/j.jvs.2014.12.009. PMid:25638515.

30 Manfredini F, Malagoni AM, Felisatti M, et al. A dynamic objective evaluation of peripheral arterial disease by near-infrared spectroscopy. Eur J Vasc Endovasc Surg. 2009;38(4):441-8. http://doi.org/10.1016/j.ejvs.2009.06.011. PMid:19625198.

31 Pedersen BL, Bækgaard N, Quistorff B. Muscle mitochondrial function in patients with type 2 diabetes mellitus and peripheral arterial disease: implications in vascular surgery. Eur J Vasc Endovasc Surg. 2009;38(3):356-64. http://doi.org/10.1016/j.ejvs.2009.04.014. PMid:19524462.

32 Kociánová E, Václavík J, Tomková J, et al. Heart rate is a useful marker of adherence to beta-blocker treatment in hypertension. Blood Press. 2017;26(5):311-8. http://doi.org/10.1080/08037051.2017.1346458. PMid:28701047.

33 Nor SMN, Suzana S, Hanis MY, et al. Assessment of physical activity level among individuals with type 2 diabetes mellitus at Cheras Health Clinic, Kuala Lumpur. Malays J Nutr. 2010;16(1):101-12. PMid:22691857.

34 Lima A, Bakker J. Near-infrared spectroscopy for monitoring peripheral tissue perfusion in critically ill patients. Rev Bras Ter Intensiva. 2011;23(3):341-51. http://doi.org/10.1590/S0103-507X2011000300013. PMid:23949407.

35 Jones S, Chiesa ST, Chaturvedi N, Hughes AD. Recent developments in near-infrared spectroscopy (NIRS) for the assessment of local skeletal muscle microvascular function and capacity to utilise oxygen. Artery Res. 2016;16(C):25-33. http://doi.org/10.1016/j.artres.2016.09.001. PMid:27942271.

36 Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bulow J, Kjær M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports. 2001;11(4):213-22. http://doi.org/10.1034/j.1600-0838.2001.110404.x. PMid:11476426.

37 Niemeijer VM, Jansen JP, Dijk TV, et al. The influence of adipose tissue on spatially resolved near-infrared spectroscopy derived skeletal muscle oxygenation: the extent of the problem. Physiol Meas. 2017;38(3):539-54. http://doi.org/10.1088/1361-6579/aa5dd5. PMid:28151429.

38 Cooper CE, Penfold SM, Elwell CE, Angus C. Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals. Adv Exp Med Biol. 2010;662:177-81. http://doi.org/10.1007/978-1-4419-1241-1_25. PMid:20204789.

39 Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev. 2015;95(2):549-601. http://doi.org/10.1152/physrev.00035.2013. PMid:25834232.

40 Misra S, Shishehbor MH, Takahashi EA, et al. Perfusion assessment in critical limb ischemia: principles for understanding and the development of evidence and evaluation of devices: a scientific statement from the american heart association. Circulation. 2019;140(12):e657-72. http://doi.org/10.1161/CIR.0000000000000708. PMid:31401843.


Submitted date:
09/10/2023

Accepted date:
12/09/2024

Sociedade Brasileira de Angiologia e Cirurgia Vascular (SBACV)"> Sociedade Brasileira de Angiologia e Cirurgia Vascular (SBACV)">
67bc6c76a9539569d57946f5 jvb Articles
Links & Downloads

J Vasc Bras

Share this page
Page Sections