A comparative analysis of transcranial Doppler parameters acquired during carotid stenting and semi-eversion carotid endarterectomy
Uma análise comparativa de parâmetros do Doppler transcraniano adquiridos durante a colocação de stent carotídeo e endarterectomia carotídea por semieversão
Germano da Paz Olveira, Ana Terezinha Guillaumon, Sérgio Clementino Benvindo, Joana Mayra Teixeira Lima, Sérgio Ricardo Freire Barreto, Wagner Mauad Avelar, Fernando Cendes
Abstract
Background: Carotid endarterectomy (CEA) and carotid artery stenting (CAS) have both been proposed for treatment of critical atherosclerotic stenosis located at the carotid bifurcation. Monitoring of hyperintense microembolic signals (MES) by transcranial Doppler ultrasound (TCD) is considered a method of quality control, both in CEA and in CAS. Objective: To analyze temporal distribution of MES throughout both semi-eversion CEA and CAS procedures and to evaluate changes in mean velocity of blood flow through the ipsilateral middle cerebral artery (MCA). Method: Thirty-three procedures (17 CEA and 16 CAS) were prospectively monitored using TCD and the data were related to three different stages of surgery (pre-cerebral protection, during cerebral protection and post-cerebral protection). Chi-square, Mann-Whitney, ANOVA and contrast tests were used for statistical analysis. Results: The MES were uniformly distributed in the CEA group, but not in the CAS group (p = 0.208). The number of MES was higher in the CAS group in all stages. The average flow in the MCA was similarly lower in both groups during the protection stage. Conclusion: CEA provoked a lower incidence of MES per procedure than CAS in all stages. The behavior of the averages of the mean of blood flow through the MCA was similar in both groups.
Keywords
Resumo
Contexto: A endarterectomia carotídea (EC) e a angioplastia carotídea (AC) são propostas para o tratamento de estenoses críticas localizadas na bifurcação carotídea. O monitoramento dos sinais de microembolias (SMs) pela ultrassonografia Doppler transcraniana (UDT) é considerado um método de controle de qualidade para ambas as técnicas. Objetivos: Analisar a distribuição temporal dos SMs ao longo de diferentes estágios da EC por semieversão e da AC, e avaliar o significado das mudanças nas médias das velocidades médias do fluxo na artéria cerebral média ipsilateral (ACM). Método: Trinta e três procedimentos (17 ECs e 16 ACs) foram monitorados com UDT, e os dados foram coletados prospectivamente para diferenciar os diferentes estágios cirúrgicos (pré, durante e pós-proteção cerebral). Para análise estatística foram usados os testes qui-quadrado, Mann-Whitney, análise de variância (ANOVA) e contraste. Resultados: Em ambos os grupos, os SMs foram distribuídos uniformemente (p = 0,208). Em todos os tempos, o número de SMs foi superior no grupo AC. A média das velocidades médias do fluxo na ACM foi menor durante o tempo de proteção em ambos os grupos. Conclusão: A EC teve uma menor incidência de SMs que a AC em todos os estágios. A média das velocidades médias na ACM teve comportamento similar em ambos os grupos.
Palavras-chave
References
1. Brott TG, Halperin JL, Abbara S, et al. 2011 ASA/ACCF/AHA/AANN/AANS/ACR/ASNR/CNS/SAIP/SCAI/SIR/SNIS/SVM/SVS guideline on the management of patients with extracranial carotid and vertebral artery disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American Stroke Association, American Association of Neuroscience Nurses, American Association of Neurological Surgeons, American College of Radiology, American Society of Neuroradiology, Congress of Neurological Surgeons, Society of Atherosclerosis Imaging and Prevention, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of NeuroInterventional Surgery, Society for Vascular Medicine, and Society for Vascular Surgery. Circulation. 2011;124(4):489-532. PMid:21282505. http://dx.doi.org/10.1161/CIR.0b013e31820d8d78.
2. Ringleb PA, Kunze A, Allenberg JR, et al. The stent-supported percutaneous angioplasty of the carotid artery vs. endarterectomy trial. Cerebrovasc Dis. 2004;18(1):66-8. PMid:15178989. http://dx.doi.org/10.1159/000078752.
3. Mas JL, Trinquart L, Leys D, et al. Endarterectomy Versus Angioplasty in Patients with Symptomatic Severe Carotid Stenosis (EVA-3S) trial: results up to 4 years from a randomised, multicentre trial. Lancet Neurol. 2008;7(10):885-92. PMid:18774745. http://dx.doi.org/10.1016/S1474-4422(08)70195-9.
4. Jordan WD Jr, Voellinger DC, Doblar DD, Plyushcheva NP, Fisher WS, McDowell HA. Microemboli detected by transcranial doppler monitoring in patients during carotid angioplasty versus carotid endarterectomy. Cardiovasc Surg. 1999;7(1):33-8. PMid:10073757. http://dx.doi.org/10.1016/S0967-2109(98)00097-0.
5. Altaf N, Kandiyil N, Hosseini A, Mehta R, MacSweeney S, Auer D. Risk factors associated with cerebrovascular recurrence in symptomatic carotid disease: a comparative study of carotid plaque morphology, microemboli assessment and the European Carotid Surgery Trial risk model. J Am Heart Assoc. 2014;3(3):e000173. PMid:24895159. http://dx.doi.org/10.1161/JAHA.113.000173.
6. Ackerstaff RG, Moons KG, van de Vlasakker CJ, et al. Association of intraoperative transcranial doppler monitoring variables with stroke from carotid endarterectomy. Stroke. 2000;31(8):1817-23. PMid:10926940. http://dx.doi.org/10.1161/01.STR.31.8.1817.
7. Ackerstaff RG, Suttorp MJ, van den Berg JC, et al. Prediction of early cerebral outcome by transcranial doppler monitoring in carotid bifurcation angioplasty and stenting. J Vasc Surg. 2005;41(4):618-24. PMid:15874925. http://dx.doi.org/10.1016/j.jvs.2005.01.034.
8. Bossema ER, Brand N, Moll FL, Ackerstaff RG, van Doornen LJ. Perioperative microembolism is not associated with cognitive outcome three months after carotid endarterectomy. Eur J Vasc Endovasc Surg. 2005;29(3):262-8. PMid:15694799. http://dx.doi.org/10.1016/j.ejvs.2004.11.010.
9. Crawley F, Stygall J, Lunn S, Harrison M, Brown MM, Newman S. Comparison of microembolism detected by transcranial doppler and neuropsychological sequelae of carotid surgery and percutaneous transluminal angioplasty. Stroke. 2000;31(6):1329-34. PMid:10835452. http://dx.doi.org/10.1161/01.STR.31.6.1329.
10. Purandare N, Burns A, Daly KJ, et al. Cerebral emboli as a potential cause of alzheimer’s disease and vascular dementia: Case-control study. BMJ. 2006;332(7550):1119-24. PMid:16648133. http://dx.doi.org/10.1136/bmj.38814.696493.AE.
11. Wapp M, Everts R, Burren Y, et al. Cognitive improvement in patients with carotid stenosis is independent of treatment type. Swiss Med Wkly. 2015;145:w14226. PMid:26700596.
12. Mommertz G, Das M, Langer S, et al. Early control of distal internal carotid artery during carotid endarterectomy: Does it reduce cerebral microemboli? J Cardiovasc Surg. 2010;51(3):369-75. PMid:20523287.
13. Tedesco MM, Dalman RL, Zhou W, Coogan SM, Lane B, Lee JT. Reduction of postprocedure microemboli following retrospective quality assessment and practice improvement measures for carotid angioplasty and stenting. J Vasc Surg. 2009;49(3):607-12. PMid:19135833. http://dx.doi.org/10.1016/j.jvs.2008.10.031.
14. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med. 1991;325(7):445-53. PMid:1852179. http://dx.doi.org/10.1056/NEJM199108153250701.
15. Walker MD. Executive committee for the asymptomatic carotid atherosclerosis study. Endarterectomy for asymptomatic carotid artery stenosis. JAMA. 1995;273(18):1421-8. PMid:7723155. http://dx.doi.org/10.1001/jama.1995.03520420037035.
16. Effeney DJ, Stoney RJ. Extracranial cerebrovascular disease. In: Effeney DJ, Stoney RJ, editors. Wylie’s Atlas of Vascular Surgery. Philadelphia: J. B. Lippincott Company; 1992. p. 18-48.
17. Gupta N, Corriere MA, Dodson TF, et al. The incidence of microemboli to the brain is less with endarterectomy than with percutaneous revascularization with distal filters or flow reversal. J Vasc Surg. 2011;53(2):316-22. PMid:21129899. http://dx.doi.org/10.1016/j.jvs.2010.08.063.
18. Ringelstein EB, Droste DW, Babikian VL. Consensus on microembolus detection by tcd. International consensus group on microembolus detection. Stroke. 1998;29(3):725-9. PMid:9506619. http://dx.doi.org/10.1161/01.STR.29.3.725.
19. Skjelland M, Krohg-Sorensen K, Tennoe B, Bakke SJ, Brucher R, Russell D. Cerebral microemboli and brain injury during carotid artery endarterectomy and stenting. Stroke. 2009;40(1):230-4. PMid:18927460. http://dx.doi.org/10.1161/STROKEAHA.107.513341.
20. Gaunt ME, Martin PJ, Smith JL, et al. Clinical relevance of intraoperative embolization detected by transcranial doppler ultrasonography during carotid endarterectomy: A prospective study of 100 patients. Br J Surg. 1994;81(10):1435-9. PMid:7820463. http://dx.doi.org/10.1002/bjs.1800811009.
21. Wolf O, Heider P, Heinz M, et al. Microembolic signals detected by transcranial doppler sonography during carotid endarterectomy and correlation with serial diffusion-weighted imaging. Stroke. 2004;35(11):e373-5. PMid:15388901. http://dx.doi.org/10.1161/01.STR.0000143184.69343.ec.
22. Gossetti B, Gattuso R, Irace L, et al. Embolism to the brain during carotid stenting and surgery. Acta Chir Belg. 2007;107(2):151-4. PMid:17515263.
23. Bosiers M, Donato G, Deloose K, et al. Does free cell area influence the outcome in carotid artery stenting? Eur J Vasc Endovasc Surg. 2007;33:135-41. PMID: 17097897. http://dx.doi.org/10.1016/j.ejvs.2006.09.019.
24. Hart JP, Peeters P, Verbist J, Deloose K, Bosiers M. Do device characteristics impact outcome in carotid artery stenting? J Vasc Surg. 2006;44:725-30. PMID: 17011998. http://dx.doi.org/10.1016/j.jvs.2006.06.029.
25. Timaran CH, Rosero EB, Higuera A, Ilarraza A, Modrall JG, Clagett GP. Randomized clinical trial of open-cell vs closed-cell stents for carotid stenting and effects of stent design on cerebral embolization. J Vasc Surg. 2011;54(5):1310-6. PMid:21723064. http://dx.doi.org/10.1016/j.jvs.2011.05.013.
26. Tadros RO, Spyris CT, Vouyouka AG, et al. Comparing the embolic potential of open and closed cell stents during carotid angioplasty and stenting. J Vasc Surg. 2012;56(1):89-95. PMid:22386144. http://dx.doi.org/10.1016/j.jvs.2011.12.077.
27. Maltezos CK, Papanas N, Papas TT, et al. Changes in blood flow of anterior and middle cerebral arteries following carotid endarterectomy: A transcranial doppler study. Vasc Endovascular Surg. 2007;41(5):389-96. PMid:17942853. http://dx.doi.org/10.1177/1538574407302850.
28. Nowacki P, Zywica A, Podbielski J, Kornacewicz-Jach Z, Drechsler H, Drechsler D. Middle cerebral artery flow after angioplasty and stenting of symptomatic internal carotid artery stenosis. Neurol Neurochir Pol. 2009;43(1):9-15. PMid:19353439.
29. Ali AM, Green D, Zayed H, Halawa M, El-Sakka K, Rashid HI. Cerebral monitoring in patients undergoing carotid endarterectomy using a triple assessment technique. Interact Cardiovasc Thorac Surg. 2011;12(3):454-7. PMid:21098425. http://dx.doi.org/10.1510/icvts.2010.235598.