Iberoamerican Journal of Medicine
https://app.periodikos.com.br/journal/iberoamericanjm/article/doi/10.53986/ibjm.2022.0024
Iberoamerican Journal of Medicine
Original article

Plasmid carriage and the natural complexity of bacterial populations contributes to plasmid persistence

El transporte de plásmidos y la complejidad natural de las poblaciones bacterianas contribuyen a la persistencia del plásmido

Tatiana Hillman

Downloads: 3
Views: 1113

Abstract

Introduction: Plasmids carry and transport genes that assist their hosts to survive in many environments. Many studies have examined the conditions for plasmid persistence in bacterial populations. A limitation includes that a majority of the mathematical models for examining plasmid persistence only included bacteria from similar colonies. However, most bacterial cells inhabit complex communities where plasmids disseminate between varied bacterial host cells. Thus, there is a gap in knowledge concerning the persistence of plasmids in natural bacterial populations. To address a few of these gaps in knowledge, the present study attempted to examine the effects of plasmid carriage on intrinsic stages of bacterial populations in Bacillus subtilis co-cultures.
Material and methods: B. subtilis cells were transformed with CRISPR-hCas-9 plasmid vectors where the natural phases of bacterial growth, biofilm production, and antibiotic resistance were examined in relation to plasmid carriage. These three natural phases were measured in relation to plasmid carriage through in vitro co-culture assays.
Results: After calculating the CFU/mL, bacterial growth in the B. subtilis-Carrier with Escherichia coli (B. sub-C-E. coli) and Vibrio harveyi (B. sub-C-VH) co-cultures significantly decreased with a paired-t-test two-tailed P=0. The WT B. subtilis-V.H samples, the B. subtilis Carrier-V.H co-cultures, and the controls each scored a total of 40, 47, and 46 of crystal violet (CV) intensity of biofilm, respectively. Biofilm formation decreased after co-culturing E. coli with the B. subtilis-Carrier, yielding a P<0.001. The antibiotic resistance levels of the co-cultures increased by 3% for the B. sub-C-V.H samples while the B. sub-C-E. coli co-cultures decreased in antibiotic sensitivity by approximately 1.5%.
Conclusions: Plasmid carriage contributes to plasmid persistence via altering the natural phases of bacterial populations.

Keywords

Plasmid carriage; Plasmid persistence; Biofilm; Conjugation; HGT

Resumen

Introducción: Los plásmidos portan y transportan genes que ayudan a sus huéspedes a sobrevivir en muchos entornos. Muchos estudios han examinado las condiciones para la persistencia de plásmidos en poblaciones bacterianas. Una limitación incluye que la mayoría de los modelos matemáticos para examinar la persistencia de plásmidos solo incluyeron bacterias de colonias similares. Sin embargo, la mayoría de las células bacterianas habitan en comunidades complejas donde los plásmidos se diseminan entre diversas células huésped bacterianas. Por lo tanto, existe un vacío en el conocimiento sobre la persistencia de plásmidos en poblaciones bacterianas naturales. Para abordar algunas de estas lagunas en el conocimiento, el presente estudio intentó examinar los efectos del transporte de plásmidos en las etapas intrínsecas de las poblaciones bacterianas en cocultivos de Bacillus subtilis.
Material y métodos: Células de B. subtilis se transformaron con vectores plasmídicos CRISPR-hCas-9 donde se examinaron las fases naturales de crecimiento bacteriano, producción de biopelículas y resistencia a los antibióticos en relación con el transporte del plásmido. Estas tres fases naturales se midieron en relación con el transporte de plásmidos a través de ensayos de cocultivo in vitro.
Resultados: Después de calcular las UFC/mL, el crecimiento bacteriano en los cocultivos de B. subtilis-Carrier con Escherichia coli (B. sub-C-E. coli) y Vibrio harveyi (B. sub-C-VH) disminuyó significativamente con un -t-test de dos colas P=0. Las muestras WT B. subtilis-V.H, los cocultivos B. subtilis Carrier-V.H y los controles obtuvieron cada uno un total de 40, 47 y 46 de intensidad de biopelícula cristal violeta (CV), respectivamente. La formación de biopelículas disminuyó después de cocultivar E. coli con B. subtilis-Carrier, lo que arrojó un P<0,001. Los niveles de resistencia a los antibióticos de los cocultivos aumentaron un 3 % para las muestras de B. sub-C-V.H, mientras que las muestras de B. sub-C-E. Los cocultivos de E. coli disminuyeron la sensibilidad a los antibióticos en aproximadamente un 1,5 %.
Conclusiones: El transporte de plásmidos contribuye a la persistencia de plásmidos mediante la alteración de las fases naturales de las poblaciones bacterianas.

Palabras clave

Trasnporte de plásmido; Persistencia de plásmido; Biofilm; Conjugación; HGT

References

1. Alonso-Del Valle A, León-Sampedro R, Rodríguez-Beltrán J, DelaFuente J, Hernández-García M, Ruiz-Garbajosa P, et al. Variability of plasmid fitness effects contributes to plasmid persistence in bacterial communities. Nat Commun. 2021;12(1):2653. doi: 10.1038/s41467-021-22849-y.
2. Pinilla-Redondo R, Olesen AK, Russel J, de Vries LE, Christensen LD, Musovic S, et al. Broad Dissemination of Plasmids across Groundwater-Fed Rapid Sand Filter Microbiomes. mBio. 2021;12(6):e0306821. doi: 10.1128/mBio.03068-21.
3. Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ, Paterson S, et al. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol. 2021;19(10):e3001225. doi: 10.1371/journal.pbio.3001225.
4. Jordt H, Stalder T, Kosterlitz O, Ponciano JM, Top EM, Kerr B. Coevolution of host-plasmid pairs facilitates the emergence of novel multidrug resistance. Nat Ecol Evol. 2020;4(6):863-9. doi: 10.1038/s41559-020-1170-1.
5. Li L, Dechesne A, Madsen JS, Nesme J, Sørensen SJ, Smets BF. Plasmids persist in a microbial community by providing fitness benefit to multiple phylotypes. ISME J. 2020;14(5):1170-81. doi: 10.1038/s41396-020-0596-4.
6. Stecher B, Denzler R, Maier L, Bernet F, Sanders MJ, Pickard DJ, et al. Gut inflammation can boost horizontal gene transfer between pathogenic and commensal Enterobacteriaceae. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1269-74. doi: 10.1073/pnas.1113246109.
7. Meijer WJJ, Boer DR, Ares S, Alfonso C, Rojo F, Luque-Ortega JR, et al. Multiple Layered Control of the Conjugation Process of the Bacillus subtilis Plasmid pLS20. Front Mol Biosci. 2021;8:648468. doi: 10.3389/fmolb.2021.648468.
8. Liu L, Chen X, Skogerbø G, Zhang P, Chen R, He S, Huang DW. The human microbiome: a hot spot of microbial horizontal gene transfer. Genomics. 2012;100(5):265-70. doi: 10.1016/j.ygeno.2012.07.012.
9. Shterzer N, Mizrahi I. The animal gut as a melting pot for horizontal gene transfer. Can J Microbiol. 2015;61(9):603-5. doi: 10.1139/cjm-2015-0049.
10. Sarker MM, Islam KN, Huri HZ, Rahman M, Imam H, Hosen MB, et al. Studies of the impact of occupational exposure of pharmaceutical workers on the development of antimicrobial drug resistance. J Occup Health. 2014;56(4):260-70. doi: 10.1539/joh.14-0012-oa.
11. Stalder T, Cornwell B, Lacroix J, Kohler B, Dixon S, Yano H, et al. Evolving Populations in Biofilms Contain More Persistent Plasmids. Mol Biol Evol. 2020;37(6):1563-76. doi: 10.1093/molbev/msaa024.
12. Gama JA, Zilhão R, Dionisio F. Plasmid Interactions Can Improve Plasmid Persistence in Bacterial Populations. Front Microbiol. 2020;11:2033. doi: 10.3389/fmicb.2020.02033.
13. Hall JPJ, Wright RCT, Guymer D, Harrison E, Brockhurst MA. Extremely fast amelioration of plasmid fitness costs by multiple functionally diverse pathways. Microbiology (Reading). 2020;166(1):56-62. doi: 10.1099/mic.0.000862.
14. Hülter NF, Wein T, Effe J, Garoña A, Dagan T. Intracellular Competitions Reveal Determinants of Plasmid Evolutionary Success. Front Microbiol. 2020;11:2062. doi: 10.3389/fmicb.2020.02062.
15. Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid. 2019;102:29-36. doi: 10.1016/j.plasmid.2019.01.003.
16. Gama JA, Fredheim EGA, Cléon F, Reis AM, Zilhão R, Dionisio F. Dominance Between Plasmids Determines the Extent of Biofilm Formation. Front Microbiol. 2020;11:2070. doi: 10.3389/fmicb.2020.02070.
17. Hernández-Beltrán JCR, San Millán A, Fuentes-Hernández A, Peña-Miller R. Mathematical Models of Plasmid Population Dynamics. Front Microbiol. 2021;12:606396. doi: 10.3389/fmicb.2021.606396.
18. Krone SM, Lu R, Fox R, Suzuki H, Top EM. Modelling the spatial dynamics of plasmid transfer and persistence. Microbiology (Reading). 2007;153(Pt 8):2803-16. doi: 10.1099/mic.0.2006/004531-0.
19. Benz F, Huisman JS, Bakkeren E, Herter JA, Stadler T, Ackermann M, et al. Plasmid- and strain-specific factors drive variation in ESBL-plasmid spread in vitro and in vivo. ISME J. 2021;15(3):862-78. doi: 10.1038/s41396-020-00819-4.
20. Gama JA, Fredheim EGA, Cléon F, Reis AM, Zilhão R, Dionisio F. Dominance Between Plasmids Determines the Extent of Biofilm Formation. Front Microbiol. 2020;11:2070. doi: 10.3389/fmicb.2020.02070.
21. Nesse LL, Mo SS, Ramstad SN, Witsø IL, Sekse C, Bruvoll AEE, et al. The Effect of Antimicrobial Resistance Plasmids Carrying blaCMY-2 on Biofilm Formation by Escherichia coli from the Broiler Production Chain. Microorganisms. 2021;9(1):104. doi: 10.3390/microorganisms9010104.
22. Yildiz FH, Visick KL. Vibrio biofilms: so much the same yet so different. Trends Microbiol. 2009;17(3):109-18. doi: 10.1016/j.tim.2008.12.004.
23. Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev. 2013;37(6):849-71. doi: 10.1111/1574-6976.12018.
24. Belas R. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol. 2014;22(9):517-27. doi: 10.1016/j.tim.2014.05.002.
25. Wood TK, González Barrios AF, Herzberg M, Lee J. Motility influences biofilm architecture in Escherichia coli. Appl Microbiol Biotechnol. 2006;72(2):361-7. doi: 10.1007/s00253-005-0263-8.
26. Pesavento C, Becker G, Sommerfeldt N, Possling A, Tschowri N, Mehlis A. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev. 2008;22(17):2434-46. doi: 10.1101/gad.475808.
27. Hölscher T, Bartels B, Lin YC, Gallegos-Monterrosa R, Price-Whelan A, Kolter R, et al. Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development. J Mol Biol. 2015;427(23):3695-708. doi: 10.1016/j.jmb.2015.06.014.
28. Haiko J, Westerlund-Wikström B. The role of the bacterial flagellum in adhesion and virulence. Biology (Basel). 2013;2(4):1242-67. doi: 10.3390/biology2041242.
29. Connelly MB, Young GM, Sloma A. Extracellular proteolytic activity plays a central role in swarming motility in Bacillus subtilis. J Bacteriol. 2004;186(13):4159-67. doi: 10.1128/JB.186.13.4159-4167.2004.
30. Røder HL, Trivedi U, Russel J, Kragh KN, Herschend J, Thalsø-Madsen I, et al. Biofilms can act as plasmid reserves in the absence of plasmid specific selection. NPJ Biofilms Microbiomes. 2021;7(1):78. doi: 10.1038/s41522-021-00249-w.
31. Svara F, Rankin DJ. The evolution of plasmid-carried antibiotic resistance. BMC Evol Biol. 2011;11:130. doi: 10.1186/1471-2148-11-130.
32. Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R, You L. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun. 2017;8(1):1689. doi: 10.1038/s41467-017-01532-1.
33. San Millan A. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends Microbiol. 2018;26(12):978-85. doi: 10.1016/j.tim.2018.06.007.
34. San Millan A, Santos-Lopez A, Ortega-Huedo R, Bernabe-Balas C, Kennedy SP, Gonzalez-Zorn B. Small-plasmid-mediated antibiotic resistance is enhanced by increases in plasmid copy number and bacterial fitness. Antimicrob Agents Chemother. 2015;59(6):3335-41. doi: 10.1128/AAC.00235-15.
35. Andersson DI, Hughes D. Persistence of antibiotic resistance in bacterial populations. FEMS Microbiol Rev. 2011;35(5):901-11. doi: 10.1111/j.1574-6976.2011.00289.x.
36. Loftie-Eaton W, Bashford K, Quinn H, Dong K, Millstein J, Hunter S, et al. Compensatory mutations improve general permissiveness to antibiotic resistance plasmids. Nat Ecol Evol. 2017;1(9):1354-63. doi: 10.1038/s41559-017-0243-2.
37. Harrison E, Guymer D, Spiers AJ, Paterson S, Brockhurst MA. Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr Biol. 2015;25(15):2034-9. doi: 10.1016/j.cub.2015.06.024.
38. Kottara A, Hall JPJ, Harrison E, Brockhurst MA. Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species. FEMS Microbiol Ecol. 2018;94(1):fix172. doi: 10.1093/femsec/fix172.
39. Bottery MJ, Wood AJ, Brockhurst MA. Adaptive modulation of antibiotic resistance through intragenomic coevolution. Nat Ecol Evol. 2017;1(9):1364-69. doi: 10.1038/s41559-017-0242-3.
40. Ilhan J, Kupczok A, Woehle C, Wein T, Hülter NF, Rosenstiel P, et al. Segregational Drift and the Interplay between Plasmid Copy Number and Evolvability. Mol Biol Evol. 2019;36(3):472-86. doi: 10.1093/molbev/msy225.
41. Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol. 2012;20(6):262-7. doi: 10.1016/j.tim.2012.04.003.
42. San Millan A, Escudero JA, Gifford DR, Mazel D, MacLean RC. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat Ecol Evol. 2016;1(1):10. doi: 10.1038/s41559-016-0010.
43. Turner PE, Williams ES, Okeke C, Cooper VS, Duffy S, Wertz JE. Antibiotic resistance correlates with transmission in plasmid evolution. Evolution. 2014;68(12):3368-80. doi: 10.1111/evo.12537.
44. Santos-Lopez A, Bernabe-Balas C, Ares-Arroyo M, Ortega-Huedo R, Hoefer A, San Millan A, et al. A Naturally Occurring Single Nucleotide Polymorphism in a Multicopy Plasmid Produces a Reversible Increase in Antibiotic Resistance. Antimicrob Agents Chemother. 2017;61(2):e01735-16. doi: 10.1128/AAC.01735-16.
45. Wein T, Hülter NF, Mizrahi I, Dagan T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun. 2019;10(1):2595. doi: 10.1038/s41467-019-10600-7.
46. Porse A, Schønning K, Munck C, Sommer MO. Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts. Mol Biol Evol. 2016;33(11):2860-73. doi: 10.1093/molbev/msw163.
47. San Millan A, Peña-Miller R, Toll-Riera M, Halbert ZV, McLean AR, Cooper BS, et al. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat Commun. 2014;5:5208. doi: 10.1038/ncomms6208.
48. Zwanzig M, Harrison E, Brockhurst MA, Hall JPJ, Berendonk TU, Berger U. Mobile Compensatory Mutations Promote Plasmid Survival. mSystems. 2019;4(1):e00186-18. doi: 10.1128/mSystems.00186-18.
49. Rodriguez-Beltran J, Hernandez-Beltran JCR, DelaFuente J, Escudero JA, Fuentes-Hernandez A, MacLean RC, et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat Ecol Evol. 2018;2(5):873-881. doi: 10.1038/s41559-018-0529-z.
50. San Millan A, Toll-Riera M, Qi Q, Betts A, Hopkinson RJ, McCullagh J, et al. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. ISME J. 2018;12(12):3014-24. doi: 10.1038/s41396-018-0224-8.
51. San Millan A, MacLean RC. Fitness Costs of Plasmids: a Limit to Plasmid Transmission. Microbiol Spectr. 2017;5(5). doi: 10.1128/microbiolspec.MTBP-0016-2017.


Submitted date:
02/23/2022

Reviewed date:
06/02/2022

Accepted date:
06/11/2022

Publication date:
06/14/2022

62a8a3cea953953d321e9dd3 iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections