The Impact of COVID-19 Vaccine Coverage on Deaths Outcome in Africa, Subregional Differences and the need for a Renewed Multi-level Effort
El impacto de la cobertura de la vacuna COVID-19 en el resultado de muertes en África, las diferencias subregionales y la necesidad de un esfuerzo renovado de varios niveles
Armel F. Setubi, Esther Nakoya, Annie-Flore K. Tchougene, Xavier-Gabriel Fopokam
Abstract
Introduction: SARS-CoV-2 continues to raise health and socio-economical concerns globally. The recent discovery of the B.1.1.529 (Omicron) variant with its critical mutations has heightened the debate about the need for a better global vaccination rollout to prevent the emergence of new SARS-CoV-2 strains. Optimizing vaccine rollout in Africa is crucial for the management of the pandemic and preventing the rise of new strains. To better direct efforts and interventions it is important to know what parts of the continent necessitate more attention.
Material and Methods: 30 African countries were grouped in five geographical subregions, six countries for each subregion. Data on confirmed cases, doses administered, fully vaccinated, and deaths were extracted from the Johns Hopkins Coronavirus Resource Center database. The ANOVA test evaluated differences in means for these variables classified by subregions. The correlation test and the linear regression examined the relationship between these independent variables and total deaths.
Results: There was a significant regional difference in confirmed cases (P<0.0001), and in fully vaccinated (P=0.01) across the five subregions. The overall model showed that there is a significant regional difference in the three variables’ effect on total deaths (P<0.0001). The linear regression indicated an association between the total number of deaths in relation to the confirmed cases, doses administered, and fully vaccinated (P<0.0001).
Discussion: This study indicates that a relation exists between total deaths and the variables confirmed cases, doses administered, and fully vaccinated. More importantly, African countries grouped in geographical subregions perform differently in terms of vaccine rollout, and that offers insights for better and oriented interventions.
Keywords
Resumen
Introducción: El SARS-CoV-2 sigue generando preocupaciones sanitarias y socioeconómicas a nivel mundial. El reciente descubrimiento de la variante B.1.1.529 (Omicron), con sus mutaciones críticas, ha aumentado el debate sobre la necesidad de un mejor despliegue mundial de vacunación para prevenir la aparición de nuevas cepas de SARS-CoV-2. La optimización del despliegue de vacunas en África es crucial para la gestión de la pandemia y la prevención del surgimiento de nuevas cepas. Para dirigir mejor los esfuerzos y las intervenciones, es importante saber qué partes del continente necesitan más atención.
Material y Métodos: 30 países africanos fueron agrupados en cinco subregiones geográficas, seis países para cada subregión. Los datos sobre casos confirmados, dosis administradas, vacunación completa y muertes se extrajeron de la base de datos del Centro de Recursos de Coronavirus de Johns Hopkins. La prueba ANOVA evaluó diferencias de medias para estas variables clasificadas por subregiones. La prueba de correlación y la regresión lineal examinaron la relación entre estas variables independientes y el total de muertes.
Resultados: Hubo una diferencia regional significativa en casos confirmados (P<0,0001) y en vacunados completos (P=0,01) en las cinco subregiones. El modelo general mostró que existe una diferencia regional significativa en el efecto de las tres variables sobre el total de muertes (P<0,0001). La regresión lineal indicó una asociación entre el número total de muertes con relación a los casos confirmados, las dosis administradas y los vacunados completos (P<0,0001).
Discusión: Este estudio indica que existe una relación entre el total de muertes y las variables casos confirmados, dosis administradas y vacunados completos. Más importante aún, los países africanos agrupados en subregiones geográficas se desempeñan de manera diferente en términos de implementación de vacunas, y eso ofrece información para intervenciones mejores y más orientadas.
Palabras clave
References
1. Wu X, Shi L, Lu X, Li X, Ma L. Government dissemination of epidemic information as a policy instrument during COVID-19 pandemic: Evidence from Chinese cities. Cities. 2022;125:103658. doi: 10.1016/j.cities.2022.103658.
2. World Health Organization (WHO) Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/. (accessed January 2022).
3. Weekly epidemiological update on COVID-19 - 25 January 2022. WHO. Available from: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---25-january-2022. (accessed February 2022).
4. Africa Centres for Disease Control and Prevention. Coronavirus disease 2019 (COVID-19). Africa CDC. Available from: https://africacdc.org/covid-19/. (accessed January 2022).
5. Kaur KK, Allahbadia G, Singh M. A comprehensive review on epidemiology, aetiopathogenesis, diagnosis and treatment of the novel coronavirus syndrome –- COVID-19. Iberoam J Med. 2020;2(2):110-23. doi: 10.5281/zenodo.3757110.
6. Wang C, van Haperen R, Gutiérrez-Álvarez J, Li W, Okba NMA, Albulescu I, et al. A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Nat Commun. 2021;12(1):1715. doi: 10.1038/s41467-021-21968-w.
7. Teuben MPJ, Pfeifer R, Teuber H, De Boer LL, Halvachizadeh S, Shehu A, et al. Lessons learned from the mechanisms of posttraumatic inflammation extrapolated to the inflammatory response in COVID-19: a review. Patient Saf Surg. 2020;14:28. doi: 10.1186/s13037-020-00253-7.
8. Martínez-Flores D, Zepeda-Cervantes J, Cruz-Reséndiz A, Aguirre-Sampieri S, Sampieri A, Vaca L. SARS-CoV-2 Vaccines Based on the Spike Glycoprotein and Implications of New Viral Variants. Front Immunol. 2021;12:701501. doi: 10.3389/fimmu.2021.701501.
9. Mullard A. COVID-19 vaccine development pipeline gears up. Lancet. 2020;395(10239):1751-2. doi: 10.1016/S0140-6736(20)31252-6.
10. Altmann DM, Boyton RJ. COVID-19 vaccination: The road ahead. Science. 2022;375(6585):1127-32. doi: 10.1126/science.abn1755.
11. Oleribe OO, Momoh J, Uzochukwu BS, Mbofana F, Adebiyi A, Barbera T, ET AL. Identifying Key Challenges Facing Healthcare Systems In Africa And Potential Solutions. Int J Gen Med. 2019;12:395-403. doi: 10.2147/IJGM.S223882.
12. Lamptey E, Senkyire EK, Benita DA, Boakye EO. COVID-19 vaccines development in Africa: a review of current situation and existing challenges of vaccine production. Clin Exp Vaccine Res. 2022;11(1):82-8. doi: 10.7774/cevr.2022.11.1.82.
13. Coronavirus Resource Center. Covid-19 dashboard. Johns Hopkins University and Medicine Coronavirus Resource Center. Available from: https://coronavirus.jhu.edu/map.html. (accessed January 2022).
14. Rogers AB, Barrie MB, Fallah MP, Kelly JD. Equitable and Feasible Distribution of SARS-CoV-2 Vaccines for All in Africa. Am J Trop Med Hyg. 2021;105(2):278-80. doi: 10.4269/ajtmh.21-0264.
15. Rackimuthu S, Narain K, Lal A, Nawaz FA, Mohanan P, Essar MY, et al. Redressing COVID-19 vaccine inequity amidst booster doses: charting a bold path for global health solidarity, together. Global Health. 2022;18(1):23. doi: 10.1186/s12992-022-00817-5.
16. CABRI. COVID-19 vaccine financing, procurement and distribution in African ministries of finance and health. 2021 CABRI Working Paper. Available from: https://www.cabri-sbo.org/uploads/files/Documents/CABRI-Working-Paper-COVID-19-vaccine-financing-procurement-and-distribution-in-African-ministries-of-finance-and-health.pdf. (accessed January 2022).
17. Dubé E, Laberge C, Guay M, Bramadat P, Roy R, Bettinger J. Vaccine hesitancy: an overview. Hum Vaccin Immunother. 2013;9(8):1763-73. doi: 10.4161/hv.24657.
18. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533-4. doi: 10.1016/S1473-3099(20)30120-1.
19. Saxena SK, Kumar S, Ansari S, Paweska JT, Maurya VK, Tripathi AK, et al. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol. 2022;94(4):1738-44. doi: 10.1002/jmv.27524.
20. Tenforde MW, Self WH, Adams K, Gaglani M, Ginde AA, McNeal T, et al. Association Between mRNA Vaccination and COVID-19 Hospitalization and
Disease Severity. JAMA. 2021;326(20):2043-54. doi: 10.1001/jama.2021.19499.
21. Kratochwil F. On the notion of “interest” in international relations. International Organization. 1982;36(1):1–30. doi: 10.1017/s0020818300004768.
22. Tang JW, Caniza MA, Dinn M, Dwyer DE, Heraud JM, Jennings LC, et al. An exploration of the political, social, economic and cultural factors affecting how different global regions initially reacted to the COVID-19 pandemic. Interface Focus. 2022;12(2):20210079. doi: 10.1098/rsfs.2021.0079.
23. Bell D. Political realism and international relations. Philos Compass. 2017;12(2): e12403. doi: 10.1111/phc3.12403.
24. Cooper S, Van Rooyen H, Wiysonge CS. COVID-19 vaccine hesitancy in South Africa: A complex social phenomenon. S Afr Med J. 2021;111(8):702-3. doi: 10.7196/SAMJ.2021.v111i8.15800.
25. Adepoju P. As COVID-19 vaccines arrive in Africa, Omicron is reducing supply and increasing demand. Nat Med. 2021. doi: 10.1038/d41591-021-00073-x.
26. Kolff CA, Scott VP, Stockwell MS. The use of technology to promote vaccination: A social ecological model based framework. Hum Vaccin Immunother. 2018;14(7):1636-46. doi: 10.1080/21645515.2018.1477458.
27. Leach M, MacGregor H, Akello G, Babawo L, Baluku M, Desclaux A, et al. Vaccine anxieties, vaccine preparedness: Perspectives from Africa in a Covid-19 era. Soc Sci Med. 2022;298:114826. doi: 10.1016/j.socscimed.2022.114826.
28. Mustapha T, Khubchandani J, Biswas N. COVID-19 vaccination hesitancy in students and trainees of healthcare professions: A global assessment and call for action. Brain Behav Immun Health. 2021;16:100289. doi: 10.1016/j.bbih.2021.100289.
29. Aldén M, Falla FO, Daowei Y, Barhouth M, Luan C, Rasmussen M, et al. Intracellular Reverse Transcription of Pfizer BioNTech COVID-19 mRNA Vaccine BNT162b2 In Vitro in Human Liver Cell Line. Curr Issues Mol Biol. 2022;44(3):1115-26. doi: 10.3390/cimb44030073.
30. Setubi AF, Wubie M, Djida AP, Fosuomo XE, Nousse BT, et al. Association Between Face Masks Use and Occupation in Cameroon: Perceived Susceptibility to COVID-19 and Physician’s Roles. Iberoam J Med. 2020;2(4):279-84. doi: 10.5281/zenodo.3974216.
Submitted date:
02/05/2022
Reviewed date:
03/03/2022
Accepted date:
03/16/2022
Publication date:
03/17/2022