Iberoamerican Journal of Medicine
https://app.periodikos.com.br/journal/iberoamericanjm/article/doi/10.5281/zenodo.4904608
Iberoamerican Journal of Medicine
Original article

A reliability and validity study on upper limb range of motion measurement using mobile sensor compared with goniometers

Estudio de confiabilidad y validez sobre la medición del rango de movimiento de las extremidades superiores utilizando un sensor móvil en comparación con goniómetros

Chi Ngai Lo, Ting-Ting Yeh, Chek Tien Tan, Eric W. Tsang

Downloads: 1
Views: 1401

Abstract

Introduction: The use of tele-rehabilitation devices to aid physiotherapy has gained popularity in recent years. In particular, measuring limb range of motion with a wearable mobile sensor can facilitate rehabilitation therapies by providing more efficient progress monitoring and reducing clinicians’ workload. This study aimed to examine the test-retest reliability and validity of using a wearable mobile sensor to measure upper limb range of motion (ROM).
Materials and methods: Participants were recruited by convenient sampling. They were instructed to perform four kinds of upper limb movements including shoulder flexion, abduction, external rotation and elbow flexion, from which the ROM was measured by Mobile sensors REBEE (XCLR8 Technologies) and a standard goniometer (Model 12-1000) in each movement. Each kind of movements and the two ROM measurements were performed twice for the evaluation of test-retest reliability using Intraclass Correlation Coefficients (ICC). Pearson's correlations were computed between the ROM measured by the mobile sensors and the goniometer in each movement to assess construct validities of the mobile sensors. The agreement (95% mean difference) between the two sets of measurement was illustrated by Bland-Altman plots.
Results: Thirty-four asymptomatic young Asian adults (15 males) participated in this study (Mage ± SD, 24.2 ± 3.82 years). The ICC for the ROM measured by the sensors were between 0.94 and 0.99, p <0.01 and for the goniometer measurements were between 0.95 and 0.98, p <0.01 in the four movements, indicating excellent reliability in both measurement methods. The Pearson's correlation between the sensor’s and goniometric ROM measurements in four kinds of movements ranged from r =0.96 to 0.99, p <0.01, indicating a very strong construct validity for using the mobile sensors to measure upper limb ROM. The mean difference between the two measurements ranged from 0.13 degrees to 7.6 degrees.
Conclusions: The results demonstrated that measuring upper limb ROM using the mobile sensors by non-healthcare trained students were as reliable and valid as using the standard universal goniometers by healthcare trained students. The findings implied that the wearable mobile sensors possibly allow non-healthcare trained carers to measure clinically useful, reliable and valid upper limb ROM from patients, which may facilitate symptom monitoring and improve the efficiency of the rehabilitation process.

Keywords

Range of motion; Upper limb; Accelerometer; Goniometer

Resumen

Introducción: El uso de dispositivos de tele-rehabilitación para ayudar a la fisioterapia ha ganado popularidad en los últimos años. En particular, medir el rango de movimiento de las extremidades con un sensor móvil portátil puede facilitar las terapias de rehabilitación al proporcionar una supervisión del progreso más eficiente y reducir la carga de trabajo de los médicos. Este estudio tuvo como objetivo examinar la confiabilidad y la validez test-retest del uso de un sensor móvil portátil para medir el rango de movimiento de las extremidades superiores (ROM).
Materiales y métodos: Los participantes fueron reclutados mediante muestreo conveniente. Se les indicó que realizaran cuatro tipos de movimientos de las extremidades superiores, incluida la flexión del hombro, la abducción, la rotación externa y la flexión del codo, a partir de los cuales se midió el ROM con los sensores móviles REBEE (XCLR8 Technologies) y un goniómetro estándar (Modelo 12-1000) en cada movimiento. . Cada tipo de movimientos y las dos mediciones de ROM se realizaron dos veces para la evaluación de la confiabilidad test-retest utilizando coeficientes de correlación intraclase (ICC). Se calcularon las correlaciones de Pearson entre el ROM medido por los sensores móviles y el goniómetro en cada movimiento para evaluar la validez de constructo de los sensores móviles. La concordancia (diferencia media del 95%) entre los dos conjuntos de medidas se ilustró mediante gráficos de Bland-Altman.
Resultados: Treinta y cuatro adultos jóvenes asiáticos asintomáticos (15 hombres) participaron en este estudio (Mage ± SD, 24,2 ± 3,82 años). El ICC para el ROM medido por los sensores estuvo entre 0.94 y 0.99, p <0.01 y para las mediciones del goniómetro estuvo entre 0.95 y 0.98, p <0.01 en los cuatro movimientos, lo que indica una excelente confiabilidad en ambos métodos de medición. La correlación de Pearson entre el sensor y las mediciones de ROM goniométrica en cuatro tipos de movimientos varió de r = 0,96 a 0,99, p <0,01, lo que indica una validez de constructo muy fuerte para usar los sensores móviles para medir el ROM de las extremidades superiores. La diferencia media entre las dos medidas osciló entre 0,13 grados y 7,6 grados.
Conclusiones: Los resultados demostraron que la medición del ROM de las extremidades superiores mediante sensores móviles por parte de estudiantes no capacitados en salud era tan confiable y válida como el uso de goniómetros universales estándar por estudiantes capacitados en salud. Los hallazgos implicaron que los sensores móviles portátiles posiblemente permitan a los cuidadores no capacitados en atención médica medir el ROM de las extremidades superiores clínicamente útil, confiable y válido de los pacientes, lo que puede facilitar el monitoreo de los síntomas y mejorar la eficiencia del proceso de rehabilitación.

Palabras clave

Rango de movimiento; Miembro superior; Acelerómetro; Goniómetro

References

1. Gajdosik RL, Bohannon RW. Clinical measurement of range of motion. Review of goniometry emphasizing reliability and validity. Phys Ther. 1987;67(12):1867-72. doi: 10.1093/ptj/67.12.1867.
2. Dejnabadi H, Jolles BM, Aminian K. A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. IEEE Trans Biomed Eng. 2005;52(8):1478-84. doi: 10.1109/TBME.2005.851475.
3. Noorkõiv M, Rodgers H, Price CI. Accelerometer measurement of upper extremity movement after stroke: a systematic review of clinical studies. J Neuroeng Rehabil. 2014;11:144. doi: 10.1186/1743-0003-11-144.
4. Yang CC, Hsu YL. A review of accelerometry-based wearable motion detectors for physical activity monitoring. Sensors (Basel). 2010;10(8):7772-88. doi: 10.3390/s100807772.
5. Seshia AA, Howe RT, Montague S, An integrated microelectromechanical resonant output gyroscope. Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266). 2002;722-6, doi: 10.1109/MEMSYS.2002.984372.
6. Dobkin BH. Wearable motion sensors to continuously measure real-world physical activities. Curr Opin Neurol. 2013;26(6):602-8. doi: 10.1097/WCO.0000000000000026.
7. Reese N, Bandy W. Joint Range of Motion and Muscle Length Testing. 3rd ed. Saunders; 2016.
8. Soucie JM, Wang C, Forsyth A, Funk S, Denny M, Roach KE, Boone D; Hemophilia Treatment Center Network. Range of motion measurements: reference values and a database for comparison studies. Haemophilia. 2011;17(3):500-7. doi: 10.1111/j.1365-2516.2010.02399.x.
9. Barnes CJ, Van Steyn SJ, Fischer RA. The effects of age, sex, and shoulder dominance on range of motion of the shoulder. J Shoulder Elbow Surg. 2001;10(3):242-6. doi: 10.1067/mse.2001.115270.
10. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15(2):155-63. doi: 10.1016/j.jcm.2016.02.012.
11. Schober P, Boer C, Schwarte LA. Correlation Coefficients: Appropriate Use and Interpretation. Anesth Analg. 2018;126(5):1763-8. doi: 10.1213/ANE.0000000000002864.
12. McGinnis RS, Patel S, Silva I, Mahadevan N, DiCristofaro S, Jortberg E, et al. Skin mounted accelerometer system for measuring knee range of motion.
Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:5298-302. doi: 10.1109/EMBC.2016.7591923.
13. Mourcou Q, Fleury A, Franco C, Klopcic F, Vuillerme N. Performance Evaluation of Smartphone Inertial Sensors Measurement for Range of Motion. Sensors (Basel). 2015 15;15(9):23168-87. doi: 10.3390/s150923168.
14. El-Gohary M, McNames J. Shoulder and elbow joint angle tracking with inertial sensors. IEEE Trans Biomed Eng. 2012;59(9):2635-41. doi: 10.1109/TBME.2012.2208750.
15. Lewis E, Fors L, Tharion WJ. Interrater and intrarater reliability of finger goniometric measurements. Am J Occup Ther. 2010;64(4):555-61. doi: 10.5014/ajot.2010.09028.
16. van de Pol RJ, van Trijffel E, Lucas C. Inter-rater reliability for measurement of passive physiological range of motion of upper extremity joints is better if instruments are used: a systematic review. J Physiother. 2010;56(1):7-17. doi: 10.1016/s1836-9553(10)70049-7.
17. Werner BC, Holzgrefe RE, Griffin JW, Lyons ML, Cosgrove CT, Hart JM, et al. Validation of an innovative method of shoulder range-of-motion measurement using a smartphone clinometer application. J Shoulder Elbow Surg. 2014;23(11):e275-82. doi: 10.1016/j.jse.2014.02.030.
18. Chapleau J, Canet F, Petit Y, Laflamme GY, Rouleau DM. Validity of goniometric elbow measurements: comparative study with a radiographic method. Clin Orthop Relat Res. 2011;469(11):3134-40. doi: 10.1007/s11999-011-1986-8.
19. Vohralik SL, Bowen AR, Burns J, Hiller CE, Nightingale EJ. Reliability and validity of a smartphone app to measure joint range. Am J Phys Med Rehabil. 2015;94(4):325-30. doi: 10.1097/PHM.0000000000000221.
20. Clarkson HM. Musculoskeletal assessment: joint range of motion and manual muscle strength. 2nd ed. Lippincott Williams & Wilkins; 2000.


Submitted date:
04/21/2021

Reviewed date:
05/11/2021

Accepted date:
06/04/2021

Publication date:
06/06/2021

60bce003a95395238d4b8173 iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections