Medicinal plants: Prospective drug candidates against the dreaded Coronavirus
Emmanuel Onah Ojah
Abstract
Introduction: Medicinal plants have been the most productive source of leads for the development of drugs from ancient times. Current research in drug discovery involves a multifaceted approach combining botanical, biological, and molecular techniques. Medicinal plant based drug discovery continues to provide novel and important leads against several diseases.
Methods: Relevant articles relating to the concept were identified using a combination of manual library search as well as journal publication on the subject and critically reviewed.
Results: Drug discovery from medicinal plants continues to provide an important source of new drug leads however; numerous challenges are encountered including the procurement of plant materials and implementation of appropriate high-throughput screening bioassays. Medicinal plants have great prospect in the ultimate search for the cure against the dreaded coronavirus.
Conclusion: It is hoped that the more efficient and effective application of medicinal plants would improve the drug discovery process against the dreaded coronavirus.
Keywords
References
1. Balick MJ, Cox PA. Plants, People, and Culture: the Science of Ethnobotany. New York: Scientific American Library; 1997.
2. Samuelsson G. Drugs of Natural Origin: a Textbook of Pharmacognosy. 5th ed. Stockholm: Swedish Pharmaceutical Press; 2004.
3. Kinghorn AD. Pharmacognosy in the 21st century. J Pharm Pharmacol. 2001;53(2):135-48. doi: 10.1211/0022357011775334.
4. Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery. Nat Prod Rep. 2000;17(3):215-34. doi: 10.1039/a902202c.
5. Butler MS. The role of natural product chemistry in drug discovery. J Nat Prod. 2004;67(12):2141-53. doi: 10.1021/np040106y.
6. Baker JT, Borris RP, Carte B, Cordell GA, Soejarto DD, Cragg GM, et al. Natural products drug discovery and development: new perspectives on international collaboration. J Nat Prod. 1995;58(9):1325-57. doi: 10.1021/np50123a003.
7. Pavunraj M, Ramasubbu G, Baskar K. Leucas aspera (Willd.) L.: Antibacterial, antifungal and mosquitocidal activities. Trends Phytochem Res. 2017;1(3):135-42.
8. Mohammadhosseini M. The ethnobotanical, phytochemical and pharmacological properties and medicinal applications of essential oils and extracts of different Ziziphora species. Ind Crops Prod. 2017;105:164-92.
9. Mohammadhosseini M, Sarker SD, Akbarzadeh A. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. J Ethnopharmacol. 2017;199: 257-315. doi: 10.1016/j.jep.2017.02.010.
10. Mohammadhosseini M, Venditti A, Sarker SD, Nahar L, Akbarzadeh A. The genus Ferula: Ethnobotany, phytochemistry and bioactivities - A review. Ind. Crops Prod. 2019;129:350-94.
11. Wansi JD, Sewald N, Nahar L, Martin C, Sarker SD. Bioactive essential oils from the Cameroonian rain forest: A review - Part II. Trends Phytochem Res. 2019;3(1):3-52.
12. Rai R, Nath V. Use of medicinal plants by traditional herbal healers in central India. Indian For. 2005;131(3):463-8.
13. Savithramma N, Yugandhar P, Prasad KS, Ankanna S, Chetty KM. Ethnomedicinal studies on plants used by Yanadi tribe of Chandragiri reserve forest area, Chittoor District, Andhra Pradesh, India. J Intercult.Ethnopharmacol. 2016;5(1):49-56. doi: 10.5455/jice.20160122065531.
14. Saha MR, Rai R, Kar P, Sen A, Sarker DD. Ethnobotany, traditional knowledge and socioeconomic importance of native drink among the Oraon tribe of Malda district in India. J Intercult Ethnopharmacol. 2015;4(1):34-9. doi: 10.5455/jice.20141202060743.
15. Ganesan K, Xu B. Ethnobotanical studies on folkloric medicinal plants in Nainamalai, Namakkal District, Tamil Nadu, India. Trends Phytochem Res. 2017;1(3):153-68.
16. Aidi-Wannes W, Mhamdi B, Saidani-Tounsi M, Marzouk B. Lipid and volatile composition of borage (Borago officinalis L.) leaf. Trends Phytochem Res. 2017;1(3):143-8.
17. Nunes HS, Miguel MG. Rosa damascena essential oils: a brief review about chemical composition and biological properties. Trends Phytochem Res. 2017;1(3):111-28.
18. Ganesan K, Xu B. Ethnobotanical studies on folkloric medicinal plants in Nainamalai, Namakkal District, Tamil Nadu, India. Trends Phytochem Res. 2017;1(3):153-68.
19. Camilo CJ, Alves-Nonato CdF, Galvão-Rodrigues FF, Costa WD, Clemente GG, Sobreira Macedo MAC, et al. Acaricidal activity of essential oils: a review. Trends Phytochem Res. 2017;1(4):183-98.
20. Kingston DG. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod. 2010;74(3):496-511. doi: 10.1021/np100550t.
21. Ngo LT, Okogun JI, Folk WR. 21st Century natural product research and drug development and traditional medicines. Nat Prod Rep. 2013;30(4):584-92. doi: 10.1039/c3np20120a.
22. Iwu MM. Handbook of African Medicinal Plants. 2nd ed. CRC Press; 2014.
23. Baliah NT, Astalakshmi A. Phytochemical analysis and antibacterial activity of extracts from Terminalia chebulaRetz. Int J Curr Microbiol App Sci. 2014;3(3):992-9.
24. Suroowan S, Mahomoodally F. Complementary and alternative medicine use among Mauritian women. Complement Ther Clin Pract. 2013;19(1):36-43. doi: 10.1016/j.ctcp.2012.07.002.
25. Baliga MS, Jagetia GC, Ulloor JN, Baliga MP, Venkatesh P, Reddy R, et al. The evaluation of the acute toxicity and longterm safety of hydroalcoholic extract of Sapthaparna (Alstoniascholaris) in mice and rats. Toxicol Lett. 2004;151(2):317-26. doi: 10.1016/j.toxlet.2004.01.015.
26. Jellin JM, Batz F, Hitchens K. Natural Medicines Comprehensive Database. 5th ed. California: Therapeutic Research Center; 2003.
27. Privitera JD. Olive Leaf Extract: A New/Old Healing Bonanza for Mankind. California: NutriScreen Inc; 1996.
28. Austin FG. Schistosoma mansoni chemoprophylaxis with dietary lapachol. Am J Trop Med Hyg. 1979;23(3):412-9. doi: 10.4269/ajtmh.1974.23.412.
29. Gilbert B, De-Souza J, Fascio M, Kitagaw MSN. Schistosomiasis. Protection against infection by terpenoids. Acad Brasil Cienc. 1970;42:397-400.
30. Cheever AW. Differential regulation of granuloma size and hepatic fibrosis in schistosome infections. Mem. Inst Oswaldo Cruz. 1997;92(5):689-92. doi: 10.1590/s0074-02761997000500024.
31. Sheir Z, Nasr AA, Massoud A, Salama O, Badra GA. A safe, effective, herbal anti-schistosomal therapy derived from myrrh. Am. J Trop Med Hyg. 2001;65(6):700-4. doi: 10.4269/ajtmh.2001.65.700.
32. Hassan M, El-Motaiem M, Afify H, Abaza B, El-Shafei M, Massoud AM. In vitro effect of Mirazid on Schistosoma mansoniin worms. J Egypt Soc Parasitol. 2003;33(3):999-1008.
33. El-Baz MA, Morsy TA, El-Bandary mm Motawea SM. Clinical and parasitologicals studies on the efficacy of Mirazid treatment of Schistosomiasis haematobium in Tatoon, Etsa Center, El Fayoum Governorate. J Egypt Soc Parasitol. 2003;33(3):761-76.
34. Massoud AM, El-Kholy NM, El-Shennawy FA, Farag RE. Study of some immune aspects in patients with fascioliasis before and after Chommiphoramolmol (Mirazid) treatment. J. Egypt. Soc. Parasitol. 2004;34(1):315-32.
35. Aly HF, Aly SA. Essential role of Citrus reticulata and Mirazid in treatment of Schistosoma mansoniinfected mice: Biochemical and parasitological studies. Pol J Food Nutr Sci. 2006;56(4):461-7.
36. Mak NK, Wong-Leung YL, Chan SC, Wen J, Leung KN, Fung MC. Isolation of anti-leukemia compounds from citrus reticulate. Life Sci. 1999;58(15):1269-76. doi: 10.1016/0024-3205(96)00088-4.
37. Tkachenko JG, Kazarinova NV, Muzyehenko LM, Shurgaya AM, Pavlova OV, Safonova, NG. Antibiotic properties of essential oils of some plant species. Rastit Resur. 1999;35:11-24.
38. Tanizawa H, Ohkawa Y, Takino Y, Ueno A, Kageyama T, Hara S. Studies on natural antioxidants in Citrus species. Determination of antioxidant activity of citrus fruits,. Chem Pharm Bull (Tokyo). 1992;40(7):1940-2. doi: 10.1248/cpb.40.1940.
39. Tian Q, Miller EG, Hassan A, Tang L, Patil BS. Differential inhibition of human cancer cell proliferation by citrus limonoids. Nutr Cancer. 2001;40(2):180-4. doi: 10.1207/S15327914NC402_15.
40. Aly SA, Hamed MH. Effect of Ailanthus altissima and Zizyphus spina christion bilharzial infestation in mice: Histological and histopathological studies. J Applied Sci. 2006;6(7):1437-46.
41. Okunade AL, Bikoff RE. Casper SJ, Oksman A, Goldberg DE, Lewis WH. Antiplasmodial activity of extracts and quassinoids isolated from seedlings of ailanthus altissima (simaroubaceae). Phytother Res. 2003;17(6):675-7. doi: 10.1002/ptr.1336.
42. Tamura S, Fukamiya N, Okano M, Koyama J, Koike K, Tokuda H, et al. Three new quassinoids, ailantinol, E, F and G from Ailanthus altissima. Chem Pharm Bull (Tokyo). 2003;51(4):385-9. doi: 10.1248/cpb.51.385.
43. Olajide OA. Investigation of the effects of selected medicinal plants on experimental thrombosis. Phytother Res. 1999;13(3):231-2. doi: 10.1002/(SICI)1099-1573(199905)13:3<231::AID-PTR414>3.0.CO;2-2.
44. El-Banhawey MA, Ashry MA, El-Ansary AK, Aly SA. Effect of Curcuma longa or parziquantel on Schistosoma mansoni infected mice liver-histological and histochemical studies. Indian J Exp Biol. 2007;45(10):877-89.
45. El-Ansary A, Farouk H. Effect of schistosomal infection and its treatment with Curcuma longa extract on some bioenergetics parameters in mice livers. Bull N R C Egypt. 2001;26:61-69.
46. Chuang SE, Cheng AL, Lin JK, Kuo ML. Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem Toxicol. 2000;38(11):991-5. doi: 10.1016/s0278-6915(00)00101-0.
47. Mohanty I, Arya DS, Dinda A, Joshi S, Talwar KK, Gupta SK. Protective effects of Curcuma longa on ischemia-reperfusion induced myocardial injuries and their mechanisms. Life Sci. 2004;75(14):1701-11. doi: 10.1016/j.lfs.2004.02.032.
48. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Perspect. 2001;109 Suppl 1(Suppl 1):69-75. doi: 10.1289/ehp.01109s169.
49. Siddiqui AA, Iram F, Siddiqui S, Sahu K. Role of natural products in drug discovery process. Int J Drug Dev Res. 2014;6(2):172-204.
50. Cordell GA, Colvard MD. Some thoughts on the future of ethnopharmacology. J Ethnopharmacol. 2005;100(1-2):5-14. doi: 10.1016/j.jep.2005.05.027.
51. Patwardhan B. Ethnopharmacology and drug discovery. J Ethnopharmacol. 2005;100(1-2):50-2. doi: 10.1016/j.jep.2005.06.006.
52. Heinrich M, Gibbons S. Ethnopharmacology in drug discovery: an analysis of its role and potential contribution. J Pharm Pharmacol. 2001;53(4):425-32. doi: 10.1211/0022357011775712.
53. Heinrich M. Ethnopharmacology: a short history of a multidisciplinary field of research. In: Heinrich M, Jager AK, editors. Ethnopharmacology. West Sussex: Wiley; 2001.
54. Sam TW. Toxicity testing using the brine shrimp: Artemia salina. In: Colegate SM, Moluneux RJ, editors. Bioactive natural products. Detection, isolation and structural determination. Boca Raton: CRC Press; 1993:441-56.
55. Berlin B. Ethnobiological Classification: Principles of categorization of plants and animals in traditional societies. Princeton: Princeton University Press; 1992.
56. Hamburger M, Hostettmann K. Bioactivity in plants: the link between phytochemistry and medicine. Phytochemistry. 1991;30(12):3864-74. doi: https://doi.org/10.1016/0031-9422(91)83425-K.
57. Yesilada E, Honda G, Sezik E, Tabata M, Goto K, Ikeshiro Y. Traditional medicine in turkey IV. Folk medicine in the Mediterranean subdivision. J Ethnopharmacol. 1993;39(1):31-8. doi: 10.1016/0378-8741(93)90048-a.
58. Heinrich M, Edwards S, Moerman DE, Leonti M. Ethnopharmacological field studies: a critical assessment of their conceptual basis and methods. J Ethnopharmacol. 2009;124(1):1-17. doi: 10.1016/j.jep.2009.03.043.
59. Bennett BC, Balick MJ. Does the name really matter? The importance of botanical nomenclature and plant taxonomy in biomedical research. J Ethnopharmacol. 2014;152(3):387-92. doi: 10.1016/j.jep.2013.11.042.
60. Bambhole VD, Jiddewar GG. Antiobesity effect of Iris versicolor and Holoptelea integrifolia in rats. Sachitra Ayurveda. 1985;37:557-61.
61. Khalid S, Rizwan GH, Yasin H, Perveen R, Abrar H, Shareef H, et al. Medicinal importance of Holoptelea integrifolia (Roxb). Planch-its biological and pharmacological activities. Nat Prod Chem Res. 2013;2(1):1-4. doi: 10.4172/2329-6836.1000124.
62. Wahab NZ, Rahman RA, Ismail A, Mustafa S, Hashim P. Assessment of antioxidant capacity, anti-collagenase and anti-elastase assays of Malaysian unfermented cocoa bean for cosmetic application. Nat Prod Chem Res. 2014;2(3):1-6. doi: 10.4172/2329-6836.1000132.
63. Verpoorte R. Exploration of nature’s chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discov Today. 1998;3(5):232-8. doi: https://doi.org/10.1016/S1359-6446(97)01167-7.
64. Pieroni A, Privitera S. Ethnobotany and its links to medical sciences and public health: quo vadis? Z Phytother. 2014;35(02):58-62. doi: 10.1055/s-0034-1371719.
65. Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z. Medicinal plants in therapy. Bull World Health Organ. 1985;63(6):965-81.
66. Gullo VP. Discovery of novel natural products with therapeutic potential. Approaches to the discovery of drugs from plant sources. New Jersey: Schering-Plough Research Institute; 1994.
67. Leonti M, Stafford GI, Cero MD, Cabras S, Castellanos ME, Casu L, et al. Reverse ethnopharmacology and drug discovery. J Ethnopharmacol. 2017;198:417-31. doi: 10.1016/j.jep.2016.12.044.
68. Flick AC, Ding HX, Leverett CA, Kyne RE, Liu KKC, Fink SJ, et al. Synthetic approaches to the new drugs approved during 2015. J Med Chem. 2017;60(15):6480-515. doi: 10.1021/acs.jmedchem.7b00010.
69. Lombardino JG, Lowe 3rd JA. The role of the medicinal chemist in drug discovery--then and now. Nat Rev Drug Discov. 2004;3(10):853-62. doi: 10.1038/nrd1523.
70. Li G, Lou HX. Strategies to diversify natural products for drug discovery. Med Res Rev. 2018;38(4):1255‐94. doi: 10.1002/med.21474.
71. Baker DD, Chu M, Oza U, Rajgarhia V. The value of natural products to future pharmaceutical discovery. Nat Prod Rep. 2007;24(6):1225‐44. doi: 10.1039/b602241n.
72. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod. 2003;66(7):1022-37. doi: 10.1021/np030096l.
73. Clardy J, Walsh C. Lessons from natural molecules. Nature. 2004;432(7019):829-837. doi: 10.1038/nature03194.
74. Nicolaou KC, Snyder SA. The essence of total synthesis. Proc Natl Acad Sci U S A. 2004;101(33):11929‐36. doi: 10.1073/pnas.0403799101.
75. Peterson EA, Overman LE. Contiguous stereogenic quaternary carbons: a daunting challenge in natural products synthesis. Proc Natl Acad Sci U S A. 2004;101(33):11943‐8. doi: 10.1073/pnas.0402416101.
76. Koehn FE, Carter GT. The evolving role of natural products in drug discovery. Nat Rev Drug Discov. 2005;4(3):206‐20. doi: 10.1038/nrd1657.
77. Lee D, Bhat KPL, Fong HHS, Farnsworth NR, Pezzuto JM, Kinghorn AD. Aromatase inhibitors from Broussonetia papyrifera. J Nat Prod. 2001;64(10):1286-93. doi: 10.1021/np010288l.
78. Feher M, Schmidt JM. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci. 2003;43(1):218‐27. doi: 10.1021/ci0200467.
79. Piggott AM, Karuso P. Quality, not quantity: the role of natural products and chemical proteomics in modern drug discovery. Comb Chem High Throughput Screen. 2004;7(7):607‐30. doi: 10.2174/1386207043328409.
80. Hall MG, Wilks MF, Provan WM, Eksborg S, Lumholtz B. Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers. Br J Clin Pharmacol. 2001;52(2):169‐77. doi: 10.1046/j.0306-5251.2001.01421.x.
81. Eldridge GR, Vervoort HC, Lee CM, Cremin PA, Williams CT, Hart SM, et al. High-throughput method for the production and analysis of large natural product libraries for drug discovery. Anal Chem. 2002;74(16):3963-71. doi: 10.1021/ac025534s.
82. Burke MD, Berger EM, Schreiber SL. A synthesis strategy yielding skeletally diverse small molecules combinatorially. J Am Chem Soc. 2004;126(43):14095‐104. doi: 10.1021/ja0457415.
83. Ganesan A. Natural products as a hunting ground for combinatorial chemistry. Curr Opin Biotechnol. 2004;15(6):584‐90. doi: 10.1016/j.copbio.2004.09.002.
84. Tan DS. Current progress in natural product-like libraries for discovery screening. Comb Chem High Throughput Screen. 2004;7(7):631‐43. doi: 10.2174/1386207043328418.
85. Kramer R, Cohen D. Functional genomics to new drug targets. Nat Rev Drug Discov. 2004;3(11):965‐72. doi: 10.1038/nrd1552.
86. Hoessel R, Leclerc S, Endicott JA, Nobel ME, Lawrie A, Tunnah P, et al. 1999. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol. 1999;1(1):60-7. doi: 10.1038/9035.
87. Eisenbrand G, Hippe F, Jakobs S, Muehlbeyer S. Molecular mechanisms of indirubin and its derivatives: novel anticancer molecules with their origin in traditional Chinese phytomedicine. J Cancer Res Clin Oncol. 2004;130(11):627‐35. doi: 10.1007/s00432-004-0579-2.
88. Hwang BY, Lee JH, Koo TH, Kim HS, Hong YS, Ro JS, et al. Kaurane diterpenes from Isodon japonicus inhibit nitric oxide and prostaglandin E2 production and NF-kappaB activation in LPS-stimulated macrophage RAW264.7 cells. Planta Med. 2001;67(5):406‐10. doi: 10.1055/s-2001-15808.
89. Lee JH, Koo TH, Hwang BY, Lee JJ. Kaurane diterpene, kamebakaurin, inhibits NF-kappa B by directly targeting the DNA-binding activity of p50 and blocks the expression of antiapoptotic NF-kappa B target genes. J Biol Chem. 2002;277(21):18411‐20. doi: 10.1074/jbc.M201368200.
Submitted date:
05/18/2020
Reviewed date:
06/02/2020
Accepted date:
06/03/2020
Publication date:
06/06/2020