Iberoamerican Journal of Medicine
Iberoamerican Journal of Medicine

NQO1 Enzyme and its Role in Cellular Protection; an Insight

Ahmed Atia, Azman Abdullah

Downloads: 0
Views: 541


NAD(P)H:quinone oxidoreductase 1 (NQO1) is considered as one of the most significant enzyme in cellular defense due to its ability to detoxify reactive quinones and quinone imines to their less toxic hydroquinones forms. NQO1 is a xenobiotic metabolizing cytosolic enzyme that catalyzes the reduction of two- or four-electron of numerous exogenous and endogenous quinones by utilizing flavin adenine dinucleotide (FAD) as a cofactor. NQO1 enzyme exists as a homodimer enzyme and is biochemically identified by its noticeable ability to utilize either NADH or NADPH as reducing cofactors and by its inhibition by anticoagulant agents such as dicumarol. NQO1 is a distinctly inducible enzyme and known to be controlled by the Nrf2-Keap1 pathway. The importance of the antioxidant activities exhibited by NQO1 enzyme in suppressing the oxidative stress status is provided by demonstration that induction or reduction of NQO1 levels are linked with increased and reduced susceptibilities to oxidative stress, respectively. The gene coding for NQO1 has two well-recognized polymorphisms at nucleotide site 609(C-T) and 465 (C-T) of the human cDNA. C609T causes complete loss of enzymatic activity due to protein instability, whereas the C465T results in reduction of the enzyme activity. In this Review, we deliberate the protecting activates of NQO1 and discussing its possible transcriptional pathways regulating its induction by Nrf2-Keap1/ARE system.


Gene expression; NQO1; Keap1; ARE


1. Atia A, Abdullah A. Tocotrienols: the other half of natural vitamin E. Res J Pharm Biol Chem Sci. 2014;5(2):533-43.
2. Cadenas E. Antioxidant and prooxidant functions of DT diaphorase in quinone metabolism. Biochem Pharmacol. 1995;49(2):127-40. doi: 10.1016/s0006-2952(94)00333-5.
3. Nioi P, Hayes JD. Contribution of NAD(P)H: quinine oxidoreductase 1 to protection against carcinogenesis, and regulation of its gene by the Nrf2 basic-region leucine zipper and the arylhydrocarbon receptor basic helix-loop-helix transcription factors. Mutat Res. 2004;555(1-2):149-71. doi: 10.1016/j.mrfmmm.2004.05.023.
4. Krajka-Kuzniak V, Paluszczak J, Baer-Dubowska W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment. Pharmacological Rep. 2017;69(3):393-402. doi: 10.1016/j.pharep.2016.12.011.
5. Motohashi H, O’Connor T, Katsuoka F, Engel JD, Yamamoto M. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene. 2002;294(1-2):1-12. doi: 10.1016/s0378-1119(02)00788-6.
6. Venugopal R, Jaiswal AK. Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element–mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene. 1998;17(24):3145-56. doi: 10.1038/sj.onc.1202237.
7. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer, 2003;3(10):768-80. doi: 10.1038/nrc1189.
8. Finley JW, Kong AN, Hintze KJ, Jeffery EH, Ji LL, Lei XG. Antioxidants in foods: state of the science important to the food industry. J Agric Food Chem. 2011;59(13):6837-46. doi: 10.1021/jf2013875.
9. Ross D, Kepa JK, Winski SL, Beall HD, Anwar A, Siegel D. NAD(P)H. quinone oxidoreductase-1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact. 2000;129(1-2):77-97. doi: 10.1016/s0009-2797(00)00199-x.
10. Nebert DW, Roe AL, Dieter MZ, Solis WA, Yang Y, Dalton TP. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem Pharmacol. 2000;59(1):65-85. doi: 10.1016/s0006-2952(99)00310-x.
11. Parkinson A. Biotransformation of xenobiotics. In: Klaasen CD, Emeriti E, Amdur MO, Doull J, editors. Casarett & Doull’s Toxicology. The Basic Science of Poisons. 5th ed. New York: McGraw-Hill; 1995:113-86.
12. Nakamura Y, Ohigashi H, Masuda S, Murakami A, Morimitsu Y, Kawamoto Y, et al. Redox regulation of glutathione S-transferase induction by benzyl isothiocyanate: correlation of enzyme induction with the formation of reactive oxygen intermediates. Cancer Res. 2000;60(2):219-25.
13. Siegel D, Ross D. Immunodetection of NAD(P)H: quinone oxidoreductase 1 (NQO1) in human tissues. Free Radic Biol Med. 2000;29(3-4):246-53. doi: 10.1016/s0891-5849(00)00310-5.
14. Siegel D, Franklin WA, Ross D. Immunohistochemical detection of NAD(P)H:- quinone oxidoreductase in human lung and lung tumors. Clin Cancer Res. 1998;4(9):2065-70.
15. Strassburg A, Strassburg CP, Manns MP, Tukey RH. Differential gene expression of NAD(P)H:quinone oxidoreductase and NRH:quinone oxidoreductase in human hepatocellular and biliary tissue. Mol Pharmacol. 2002;61(2):320-5. doi: 10.1124/mol.61.2.320.
16. Shen J, Barrios RJ, Jaiswal AK. Inactivation of the quinone oxidoreductases NQO1 and NQO2 strongly elevates the incidence and multiplicity of chemically induced skin tumors. Cancer Res. 2010;70(3):1006-14. doi: 10.1158/0008-5472.CAN-09-2938.
17. Cresteil T, Jaiswal AK. High levels of expression of the NAD(P)H:quinone oxidoreductase (NQO1) gene in tumor cells compared to normal cells of the same origin. Biochem Pharmacol. 1991;42(5):1021-7. doi: 10.1016/0006-2952(91)90284-c.
18. Glorieux C, Sandoval JM, Dejeans N, Ameye G, Poirel HA, Verrax J, et al. Overexpression of NAD(P)H:Quinone oxidoreductase 1 (NQO1) and genomic gain of the NQO1 locus modulates breast cancer cell sensitivity to quinones. Life Sci. 2016;145:57-65. doi: 10.1016/j.lfs.2015.12.017.
19. Yang Y, Zhang Y, Wu Q, Cui X, Lin Z, Liu S, et al. Clinical implications of high NQO1 expression in breast cancers. J Exp Clin Cancer Res. 2014;33(1):14. doi: 10.1186/1756-9966-33-14.
20. Jaiswal AK, McBride OW, Adesnik M, Nebert DW. Human dioxin-inducible cytosolic NAD(P)H:menadione oxidoreductase. cDNA sequence and localization of gene to chromosome 16. J Biol Chem. 1988;263(27):13572-8.
21. Jaiswal AK, Bell DW, Radjendirane V, Testa JR. Localization of human NQO1 gene to chromosome 16q22 and NQO2 to 6p25 and associated polymorphisms. Pharmacogenetics. 1999;9(3):413-8. doi: 10.1097/00008571-199906000-00020.
22. Prochaska HJ, Bregman HS, De Long MJ, Talalay P. Specificity of induction of cancer protective enzymes by analogues of tert-butyl-4-hydroxyanisole (BHA). Biochem Pharmacol. 1985;34(21):3909-14. doi: 10.1016/0006-2952(85)90443-5.
23. Ernster L, Navazio F. Soluble diaphorase in animal tissues. Acta Chem Scand. 1958;12:595-602.
24. Dinkova-Kostova AT, Talalay P. NAD(P)H: Quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys. 2010;501(1):116-23. doi: 10.1016/j.abb.2010.03.019.
25. Bianchet MA, Faig M, Amzel LM. Structure and mechanism of NAD[P]H:quinone oxidoreductases (NQO). Methods Enzymol. 2004;382:144-74. doi: 10.1016/S0076-6879(04)82009-3.
26. Talalay P, Dinkova-Kostova AT. Role of nicotinamide quinone oxidoreductase 1 (NQO1) in protection against toxicity of electrophiles and reactive oxygen intermediates. Methods Enzymol. 2004;382:355-64. doi: 10.1016/S0076-6879(04)82019-6.
27. Cenas N, Anusevicius Z, Nivinskas H, Miseviciene L, Sarlauskas J. Structure-activity relationships in two-electron reduction of quinones. Methods Enzymol. 2004;382:258-77. doi: 10.1016/S0076-6879(04)82015-9.
28. Cavalieri E, Rogan E, Chakravarti D. The role of endogenous catechol quinones in the initiation of cancer and neurodegenerative diseases. Methods Enzymol. 2004;382:293-319. doi: 10.1016/S0076-6879(04)82017-2.
29. Boland MP, Knox RJ, Roberts JJ. The differences in kinetics of rat and human DT-diaphorase result in a differential sensitivity of derived cell lines to CB 1954 (5-(aziridin-1-yl)-2,4- dinitrobenzamide. Biochem Pharmacol. 1991;41(6-7):867-75. doi: 10.1016/0006-2952(91)90190-g.
30. Huang MT, Miwa GT, Cronheim N, Lu AY. Rat liver cytosolic azoreductase. Electron transport properties and the mechanism of dicumarol inhibition of the purified enzyme. J Biol Chem. 1979;254(22):11223-7.
31. Cui K, Lu AY, Yang CS. Subunit functional studies of NAD(P)H:quinone oxidoreductase with a heterodimer approach. Proc Natl Acad Sci U S A. 1995;92(4):1043-7. doi: 10.1073/pnas.92.4.1043.
32. Beyer RE, Segura-Aguilar J, Di Bernardo S, Cavazzoni M, Fato R, Fiorentini D, et al. The role of DT-diaphorase in the maintenance of the reduced antioxidant form of coenzyme Q in membrane systems. Proc Natl Acad Sci U S A. 1996;93(6):2528-32. doi: 10.1073/pnas.93.6.2528.
33. Landi L, Fiorentini D, Galli MC, Segura-Aguilar J, Beyer RE. DT-Diaphorase maintains the reduced state of ubiquinones in lipid vesicles thereby promoting their antioxidant function. Free Radic Biol Med. 1997;22(1-2):329-35. doi: 10.1016/s0891-5849(96)00294-8.
34. Zhu H, Jia Z, Mahaney JE, Ross D, Misra HP, Trush MA, et al. The highly expressed and inducible endogenous NAD(P)H:quinone oxidoreductase 1 in cardiovascular cells acts as a potential superoxide scavenger. Cardiovasc Toxicol. 2007;7(3):202-11. doi: 10.1007/s12012-007-9001-z.
35. Zhang DD. Mechanistic studies of the nrf2-keap1 signalling pathway. Drug Metab Rev. 2006;38(4):769-89. doi: 10.1080/03602530600971974.
36. Kohar I, Baca M, Suarna C, Stocker R, Southwell-Keely PT. Is alpha-tocopherol a reservoir for alpha-tocopheryl hydroquinone? Free Radic Biol Med. 1995;(2):197-207. doi: 10.1016/0891-5849(95)00010-u.
37. Siegel D, Bolton EM, Burr JA, Liebler DC, Ross D. The reduction of alpha-tocopherolquinone by human NAD(P)H: quinone oxidoreductase: the role of alpha-tocopherolhydroquinone as a cellular antioxidant. Mol Pharmacol. 1997;52(2):300-5. doi: 10.1124/mol.52.2.300.
38. Siegel D, Ross D. Immunodetection of NAD(P)H:quinone oxidoreductase 1 (NQO1) in human tissues. Free Radic Biol Med. 2000;29(3-4):246-53. doi: 10.1016/s0891-5849(00)00310-5.
39. Schlager JJ, Powis G. Cytosolic NAD(P)H:(quinoneacceptor) oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int J Cancer. 1990;45(3):403-9. doi: 10.1002/ijc.2910450304.
40. Vomund S, Schäfer A, Parnham M,Brüne B, Knethen A. Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 2017;18(12):2772. doi: 10.3390/ijms18122772.
41. Malloy MT, McIntosh DJ, Walters TS, Flores A, Goodwin JS, Arinze IJ. Trafficking of the transcription factor Nrf2 to promyelocytic leukemia-nuclear bodies: implications for degradation of NRF2 in the nucleus. J Biol Chem. 2013;288(20):14569-83. doi: 10.1074/jbc.M112.437392.
42. Furukawa M, Xiong Y. BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol. 2005;25(1):162-71. doi: 10.1128/MCB.25.1.162-171.2005.
43. Stewart D, Killeen E, Naquin R, Alam S, Alam J. Degradation of transcription factor Nrf2 via the ubiquitin–proteasome pathway and stabilization by cadmium. J Biol Chem. 2003;278(4):2396-402. doi: 10.1074/jbc.M209195200.
44. Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:233-60. doi: 10.1146/annurev.pharmtox.43.100901.140229.
45. Lee JM, Johnson JA. An Important Role of Nrf2-ARE Pathway in the Cellular Defense Mechanism. J Biochem Mol Biol. 2004;37(2):139-43. doi: 10.5483/bmbrep.2004.37.2.139.
46. Dinkova-Kostova AT, Fahey JW, Talalay P. Chemical structures of inducers of nicotinamide quinone oxidoreductase 1 (NQO1). Methods Enzymol. 2004;382:423-48. doi: 10.1016/S0076-6879(04)82023-8.
47. Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes JD. Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J. 2003;374(Pt 2):337-48. doi: 10.1042/BJ20030754.
48. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stress via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007;47:89-116. doi: 10.1146/annurev.pharmtox.46.120604.141046.
49. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13(1):76-86. doi: 10.1101/gad.13.1.76.
50. Wakabayashi N, Dinkova-Kostova AT, Holtzclaw WD, Kang MI, Kobayashi A, Yamamoto M, et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A. 2004;101(7):2040-5. doi: 10.1073/pnas.0307301101.
51. Benson AM, Hunkeler MJ, Talalay P. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A. 1980;77(9):5216-20. doi: 10.1073/pnas.77.9.5216.
52. Suh JH, Shenvi SV, Dixon BM, Liu H, Jaiswal AK, Liu RM, et al. Decline in transcriptional activity of Nrf2 causes age-related loss of glutathione synthesis, which is reversible with lipoic acid. Proc Natl Acad Sci U S A. 2004;101(10):3381-6. doi: 10.1073/pnas.0400282101.
53. Jaiswal AK. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med. 2000;29(3-4):254-62. doi: 10.1016/s0891-5849(00)00306-3.
54. Ishii T, Itoh K, Yamamoto M. Roles of Nrf2 in activation of antioxidant enzyme genes via antioxidant responsive elements. Methods Enzymol. 2002;348:182-90. doi: 10.1016/s0076-6879(02)48637-5.
55. Dunna NR, Anuradha C, Vure S, Sailaja K, Surekha D, Raghunadharao D, et al. NQO1*2 [NAD(P)H:quinone oxidoreductase 1] polymorphism and its influence on acute leukemia risk. Biol Med. 2011;3(3):19-25.
56. Siegel D, Anwar A, Winski SL, Kepa JK, Zolman KL, Ross D. Rapid polyubiquitination and proteasomal degradation of a mutant form of NAD(P)H:quinone oxidoreductase 1. Mol Pharmacol. 2001;59(2):263-8. doi: 10.1124/mol.59.2.263.
57. Ross D, Siegel D. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol. 2004;382:115-44. doi: 10.1016/S0076-6879(04)82008-1.
58. Kelsey KT, Ross D, Traver RD, Christiani DC, Zuo ZF, Spitz MR, et al. Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. Br J Cancer. 1997;76(7):852-4. doi: 10.1038/bjc.1997.474.
59. Rosvold EA, McGlynn KA, Lustbader ED, Buetow KH. Identification of an NAD(P)H:quinone oxidoreductase polymorphism and its association with lung cancer and smoking. Pharmacogenetics, 1995;5(4):199-206. doi: 10.1097/00008571-199508000-00003.
60. Nebert DW, Roe AL, Vandale SE, Bingham E, Oakley GG. NAD(P)H:quinone oxidoreductase (NQO1) polymorphism, exposure to benzene, and predisposition to disease: a HuGE review. Genet Med. 2002;4(2):62-70. doi: 10.1097/00125817-200203000-00003.
61. Lienhart WD, Strandback E, Gudipati V, Koch K, Binter A, Uhl MK, et al. Catalytic competence, structure and stability of the cancer-associated R139W variant of the human NAD(P)H:quinone oxidoreductase 1 (NQO1). FEBS J. 2017;284(8):1233-45. doi: 10.1111/febs.14051.
62. Pan SS, Forrest GL, Akman SA, Hu LT. NAD(P)H:quinone oxidoreductase expression and mitomycin C resistance developed by human colon cancer HCT 116 cells. Cancer Res.1995;55(2):330-5.
63. Gaedigk A, Tyndale RF, Jurima-Romet M, Sellers EM, Grant DM, Leeder JS. NAD(P)H:quinone oxidoreductase: polymorphisms and allele frequencies in Caucasian, Chinese and Canadian Native Indian and Inuit populations. Pharmacogenetics, 1998;8(4):305-13. doi: 10.1097/00008571-199808000-00004.
64. Niki E. Evidence for beneficial effects of vitamin E. Korean J Intern Med. 2015;30(5):571-9. doi: 10.3904/kjim.2015.30.5.571.
65. Colombo ML. An update on vitamin E, tocopherol and tocotrienol-perspectives. Molecules. 2010;15(4):2103-13. doi: 10.3390/molecules15042103.
66. Valk EE, Hornstra G. Relationship between vitamin E requirement and polyunsaturated fatty acid intake in man: A review. Int J Vitam Nutr Res. 2000;70(2):31-42. doi: 10.1024/0300-9831.70.2.31.
67. Atia A, Abdullah A. Tocotrienols: molecular aspects beyond its antioxidant activity. JMRP. 2013;2:246-50.
68. Vasanthi HR, Parameswari RP, Das DK. Multifaceted role of tocotrienols in cardioprotection supports their structure: function relation. Genes Nutr. 2012;7(1):19-28. doi: 10.1007/s12263-011-0227-9.
69. Ling MT, Luk SU, Al-Ejeh F, Khanna KK. Tocotrienol as a potential anticancer agent. Carcinogenesis. 2012;33(2):233-9. doi: 10.1093/carcin/bgr261.
70. Jaiswal AK. Regulation of antioxidant response element-dependent induction of detoxifying enzyme synthesis. Methods Enzymol. 2004;378:221-38. doi: 10.1016/S0076-6879(04)78018-0.
71. Atia A, Alrawaiq N, Abdullah A. Tocotrienol-rich Palm Oil Extract Induces NAD(P)H:quinone Oxidoreductase 1 (NQO1) Expression in Mice Liver. J App Pharm Sci. 2016;6(08):127-34. doi: 10.7324/JAPS.2016.60820.
72. Hsieh TC, Elangovan S, Wu JM. Differential suppression of proliferation in MCF-7 and MDA-MB-231 breast cancer cells exposed to alpha-, gamma- and delta-tocotrienols is accompanied by altered expression of oxidative stress modulatory enzymes. Anticancer Res. 2010,30(10):4169-76.
73. Iqbal J, Minhajuddin M, Beg ZH. Suppression of 7,12 dimethylbenz[alpha]anthracene induced carcinogenesis and hyper-cholesterolemia in rats by tocotrienol-rich fraction isolated from rice bran oil. Eur J Cancer Prev. 2003;12(6):447-53. doi: 10.1097/00008469-200312000-00002.
74. Feng Z, Liu Z, Li X, Jia H, Sun L, Tian C, et al. Alpha-Tocopherol is an effective Phase II enzyme inducer: Protective effects on acrolein-induced oxidative stress and mitochondrial dysfunction in human retinal pigment epithelial cells. J Nutr Biochem. 2010;21(12):1222-31. doi: 10.1016/j.jnutbio.2009.10.010.
75. Huang Y, Khor TO, Shu L, Saw CL, Wu TY, Suh N, et al. A γ-tocopherol-rich mixture of tocopherols maintains Nrf2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation. J Nutr. 2012;142(5):818-23. doi: 10.3945/jn.111.153114.
76. De Cabo R, Burgess JR, Navas P. Adaptations to oxidative stress induced by vitamin E deficiency in rat liver. J Bioenerg Biomembr. 2006;38(5-6):309-17.
77. Singh B, Bhat NK, Bhat HK. Induction of NAD(P)H-quinone oxidoreductase 1 by antioxidants in female ACI rats is associated with decrease in oxidative DNA damage and inhibition of estrogen-induced breast cancer. Carcinogenesis. 2012;33(1):156-63. doi: 10.1093/carcin/bgr237.
78. Fahey JW, Dinkova-Kostova AT, Stephenson KK, Talalay P. The “Prochaska” microtitre plate bioassay for inducers of NQO1. Methods Enzymol. 2004;382:243-58. doi: 10.1016/S0076-6879(04)82014-7

Submitted date:

Reviewed date:

Accepted date:

Publication date:

5ed974970e8825dd5b1dab04 iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections