Iberoamerican Journal of Medicine
https://app.periodikos.com.br/journal/iberoamericanjm/article/doi/10.5281/zenodo.3786267
Iberoamerican Journal of Medicine
Original article

Zinc concentrations in the expressed prostatic fluid of patients with bladder cancer

Vladimir Zaichick, Sofia Zaichick

Downloads: 0
Views: 1172

Abstract

Introduction: In our previous studies it was concluded that the zinc (Zn) level in in human expressed prostatic fluid (EPF) is a first candidate with the role of offering a new, simple, fast, reliable, and non-invasive diagnostic tool for prostate cancer (PCa) screening. However it was unclear how other non-prostatic diseases inherent of the old persons, including heart diseases, atherosclerosis, diabetes, asymptomatic cancer of different localization and some others, impact on a chemical element composition of expressed prostatic fluid. Thus, the purpose of this study was to evaluate whether significant changes in the levels of Zn in EPF exist in patients with bladder cancer (BC).
Methods: Prostatic fluid levels of Zn were prospectively evaluated in 17 patients with BC and 51 healthy male inhabitants (control group). Measurements were performed using 109Cd radionuclide-induced energy dispersive X-ray fluorescent microanalysis developed by us.
Results: Mean value  standard deviation of mean (MSD) for concentration of Zn in the EPF of healthy males and patients with BC was 573202 mg/L and 625±108 mg/L, respectively. Using both parametric Student’s t-test and non-parametric Wilcoxon-Mann-Whitney U-test it was shown that the Zn concentration in the EPF of patients with BC did not differ from that in healthy subjects.
Conclusion: Such serious illness as BC did not impact on the Zn concentration in the EPF.

Keywords

Prostate cancer; Bladder cancer; Expressed prostatic fluid; Zinc; Energy-dispersive X-ray fluorescent analysis

References

1. Taitt HE. Global trends and prostate cancer: A review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am J Mens Health. 2018;12(6):1807-23 doi: 10.1177/1557988318798279.
2. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin. 2017;67(1) 7-30. doi: 10.3322/caac.21387.
3. Qi D, Wu C, Liu F, Gu K, Shi Z, Liu X, et al. Trends of prostate cancer incidence and mortality in Shanghai, China from 1973 to 2009. Prostate. 2015;75(14):1662-8. doi: 10.1002/pros.23046.
4. Tkac J, Gajdosova V, Hroncekova S, Bertok T, Hires M, Jane E, et al. Prostate-specific antigen glycoprofiling as diagnostic and prognostic biomarker of prostate cancer. Interface Focus. 2019;9(2):20180077. doi: 10.1098/rsfs.2018.0077.
5. Zapała P, Dybowski B, Poletajew S, Radziszewski P. What can be expected from prostate cancer biomarkers. A clinical perspective. Urol Int. 2018;100(1):1-12. doi: 10.1159/000479982.
6. Sorokin I, Mian BM. Risk calculators and updated tools to select and plan a repeat biopsy for prostate cancer detection. Asian J Androl. 2015;17(6):864-9. doi: 10.4103/1008-682X.156859.
7. Qu M, Ren SC, Sun YH. Current early diagnostic biomarkers of prostate cancer. Asian J Androl. 2014;16(4):549-54. doi: 10.4103/1008-682X.129211.
8. Thompson IM, Pauler DK, Goodman PJ, Tangen CM, Lucia MS, Parnes HL, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or = 4.0 ng per milliliter. N Engl J Med. 2004;350(22):2239-46. doi: 10.1056/NEJMoa031918.
9. Alotaibi KM. Incidence of prostate cancer among patients with prostate-related urinary symptoms: A single institution series in 10 years. Urol Ann. 2019;11(2):135-8. doi: 10.4103/UA.UA_151_18.
10. Hayes B, Murphy C, Crawley A, O'Kennedy R. Developments in point-of-care diagnostic technology for cancer detection. Diagnostics (Basel). 2018;8(2). doi: 10.3390/diagnostics8020039.
11. Zaichick S, Zaichick V. The Br, Fe, Rb, Sr, and Zn content and interrelation in intact and morphologic normal prostate tissue of adult men investigated by energy dispersive X-ray fluorescent analysis. X-Ray Spectr. 2011 40(6):464-9. doi: 10.1002/xrs.1370.
12. Zaihick V. INAA and EDXRF applications in the age dynamics assessment of Zn content and distribution in the normal human prostate. J Radioanal Nucl Chem. 2004;262:229-34.
13. Zaichick S., Zaichick V. INAA application in the age dynamics assessment of Br, Ca, Cl, K, Mg, Mn, and Na content in the normal human prostate. J Radioanal Nucl Chem. 2011;288(1):197-202. doi: https://doi.org/10.1007/s10967-010-0927-4.
14. Zaichick S, Zaichick V. The effect of age on Ag, Co, Cr, Fe, Hg, Sb, Sc, Se, and Zn contents in intact human prostate investigated by neutron activation analysis. Appl Radiat Isot. 2011;69(6):827-33. doi: https://doi.org/10.1016/j.apradiso.2011.02.010.
15. Zaichick V, Nosenko S, Moskvina I. The effect of age on 12 chemical element contents in intact prostate of adult men investigated by inductively coupled plasma atomic emission spectrometry. Biol Trace Elem Res. 2012;147(1-3):49-58. doi: 10.1007/s12011-011-9294-4.
16. Zaichick S, Zaichick V, Nosenko S, Moskvina I. Mass fractions of 52 trace elements and zinc trace element content ratios in intact human prostates investigated by inductively coupled plasma mass spectrometry. Biol Trace Elem Res. 2012;149(2) 171-83. doi: 10.1007/s12011-012-9427-4.
17. Zaichick S, Zaichick V. Relations of morphometric parameters to zinc content in paediatric and nonhyperplastic young adult prostate glands. Andrology. 2013;1(1):139-46. doi: 10.1111/j.2047-2927.2012.00005.x.
18. Zaichick V, Zaichick S. The effect of age on Br, Ca, Cl, K, Mg, Mn, and Na mass fraction in pediatric and young adult prostate glands investigated by neutron activation analysis. Appl Radiat Isot. 2013;82:145-51. doi: 10.1016/j.apradiso.2013.07.035.
19. Zaichick V, Zaichick S. INAA application in the assessment of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn mass fraction in pediatric and young adult prostate glands. J Radioanal Nucl Chem. 2013;298:1559-66. doi: 10.1007/s10967-013-2554-3.
20. Zaichick V, Zaichick S. NAA-SLR and ICP-AES Application in the assessment of mass fraction of 19 chemical elements in pediatric and young adult prostate glands. Biol Trace Elem Res. 2013;156(1-3):357-66. doi: 10.1007/s12011-013-9826-1.
21. Zaichick V, Zaichick S. Use of neutron activation analysis and inductively coupled plasma mass spectrometry for the determination of trace elements in pediatric and young adult prostate. Am J Analyt Chem. 2013;4(12):696-706. doi: 10.4236/ajac.2013.412084.
22. Zaichick V, Zaichick S. INAA application in the assessment of chemical element mass fractions in adult and geriatric prostate glands. Appl Radiat Isot. 2014;90:62-73. doi: 10.1016/j.apradiso.2014.03.010.
23. Zaichick V, Zaichick S. Use of INAA and ICP-MS for the assessment of trace element mass fractions in adult and geriatric prostate. J Radioanal Nucl Chem. 2014;301(2):383-97. doi: 10.1007/s10967-014-3173-3.
24. Zaichick V, Zaichick S. Determination of trace elements in adults and geriatric prostate combining neutron activation with inductively coupled plasma atomic emission spectrometry. Open Journal of Biochemistry. 2014;1(2):16-33.
25. Zaichick V, Zaichick S. Age-related histological and zinc content changes in adult nonhyperplastic prostate glands. Age. 2014;36(1):167-81. doi: 10.1007/s11357-013-9561-8.
26. Zaichick V, Zaichick S. Relations of bromine, iron, rubidium, strontium, and zinc content to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Biol Trace Elem Res. 2014;157(3):195-204. doi: 10.1007/s12011-014-9890-1.
27. Zaichick V, Zaichick S. Relations of the neutron activation analysis data to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Advances in Biomedical Science and Engineering. 2014;1(1):26-42.
28. Zaichick V, Zaichick S. Relations of the Al, B, Ba, Br, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, P, S, Si, Sr, and Zn mass fractions to morphometric parameters in pediatric and nonhyperplastic young adult prostate glands. Biometals. 2014;27:333-48. doi: 10.1007/s10534-014-9716-9.
29. Zaichick V. The variation with age of 67 macro- and microelement contents in nonhyperplastic prostate glands of adult and elderly males investigated by nuclear analytical and related methods. Biol Trace Elem Res. 2015;168(1):44-60. doi: 10.1007/s12011-015-0342-3.
30. Zaichick V, Sviridova T, Zaichick S. Zinc in the human prostate gland: normal, hyperplastic and cancerous. Int Urol Nephrol. 1997;29(5):565-74. doi: 10.1007/BF02552202.
31. Zaichick S, Zaichick V. Trace elements of normal, benign hypertrophic and cancerous tissues of the human prostate gland investigated by neutron activation analysis. Appl Radiat Isot. 2012;70(1):81-7. doi: 10.1016/j.apradiso.2011.08.021.
32. Zaichick V. The prostatic urethra as a Venturi effect urine-jet pump to drain prostatic fluid. Med Hypotheses. 2014;83(1):65-8. doi: 10.1016/j.mehy.2014.04.006.
33. Mackenzie AR, Hall T, Whitmore WFJr. Zinc content of expressed human prostate fluid. Nature. 1962;193(4810):72-3. doi: 10.1038/193072a0.
34. Marmar JL, Katz S, Praiss DE, De Benedictis TJ. Values for zinc in whole semen, fraction of split ejaculate, and expressed prostatic fluid. Urology. 1980;16(5):478-80. doi: 10.1016/0090-4295(80)90599-3.
35. Zaichick V, Tsyb A, Dunchik VN, Sviridova TV. Method for diagnostics of prostate diseases. Russia Certificate of invention No 997281; 1981.
36. Zaichick V, Sviridova T, Zaichick S. Zinc concentration in human prostatic fluid: normal, chronic prostatitis, adenoma, and cancer. Int Urol Nephrol. 1996;28(5):687-94. doi: 10.1007/BF02552165.
37. Costello LC, Franklin RB. Prostatic fluid electrolyte composition for the screening of prostate cancer: a potential solution to a major problem. Prostate Cancer Prostate Dis. 2009;12(1):17-24. doi: 10.1038/pcan.2008.19.
38. Zaichick V, Zaichick S, Davydov G. Method and portable facility for measurement of trace element concentration in prostate fluid samples using radionuclide-induced energy-dispersive X-ray fluorescent analysis. Nucl Sci Tech. 2016;27(6):1-8. doi: 10.1007/s41365-016-0133-3.
39. Zaichick V, Zaichick S. Ratio of zinc to bromine, iron, rubidium, and strontium concentration in expressed prostatic secretions as a source for biomarkers of prostatic cancer. Am J Res. 2019;5-6:140-50.
40. Zaichick V, Zaichick S. Some trace element contents and ratios in prostatic fluids as ancillary diagnostic tools in distinguishing between the benign prostatic hyperplasia and chronic prostatitis. Archives of Urology. 2019;2(1):12-20.
41. Zaichick V, Zaichick S. Significance of trace element quantities in the prostatic secretion of patients with benign prostatic hyperplasia and prostate cancer. J Cancer Metastasis Treat. 2019;5(48):1-9. doi: 10.20517/2394-4722.2019.07.
42. Zaichick V, Zaichick S. Some trace element contents and ratios in prostatic fluids as ancillary diagnostic tools in distinguishing between the benign prostatic hyperplasia and prostate cancer. Cancer Ther Oncol Int J. 2019;14(1):1-7.
43. Zaichick V, Zaichick S. Using prostatic fluid levels of zinc to bromine concentration ratio in non-invasive and highly accurate screening for prostate cancer. Journal of Hematology and Oncology Research. 2019;3(3):21-31. doi: 10.14302/issn.2372-6601.jhor-19-3094.
44. Zaichick V. Using prostatic fluid levels of rubidium and zinc concentration multiplication in non-invasive and highly accurate screening for prostate cancer. J Cancer Prev Curr Res. 2019;10(6):151-8.
45. Zaichick V, Zaichick S. Using prostatic fluid levels of zinc to strontium concentration ratio in non-invasive and highly accurate screening for prostate cancer. Acta Scientific Cancer Biology. 2020;4(1):12-21.
46. Zaichick V. Using prostatic fluid levels of some trace elements and their combinations in non-Invasive and highly accurate screening for prostate cancer. Journal of Cancer Therapy. 2020;11:1-17. doi: 10.4236/jct.2020.111001.
47. Zaichick V, Zaichick S. Using prostatic fluid levels of zinc concentration in non-invasive and highly accurate screening for prostate cancer. MicroMedicine 2020;8(1):1-11. doi: http://dx.doi.org/10.5281/zenodo.3606848.
48. Traa MJ, Vries J de, Roukema JA, Oudsten BL. Sexual (dys)function and the quality of sexual life in patients with colorectal cancer: A systematic review. Ann Oncol. 2012;23(1):19-27. doi: doi: 10.1093/annonc/mdr133.
49. Træen B, Olsen S. Sexual dysfunction and sexual well-being in people with heart disease. Sex Relatsh Ther. 2007;22(2):193-208. doi: https://doi.org/10.1080/14681990600637648.
50. Zaichick V, Zaichick S. A systematic review of the zinc concentrations in the prostate fluid of normal gland. Acta Scientific Medical Sciences. 2020;4(1):82-9.


Submitted date:
04/20/2020

Reviewed date:
04/29/2020

Accepted date:
05/03/2020

Publication date:
07/20/2020

5f15ddc40e8825fd449517e2 iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections