Iberoamerican Journal of Medicine
https://app.periodikos.com.br/journal/iberoamericanjm/article/doi/10.5281/zenodo.3757110
Iberoamerican Journal of Medicine
Review

A comprehensive review on epidemiology, aetiopathogenesis, diagnosis and treatment of the novel coronavirus syndrome – COVID-19

Kulvinder Kochar Kaur, Gautam Allahbadia, Mandeep Singh

Downloads: 1
Views: 1544

Abstract

Since the outbreak of the novel Coronavirus in December 2019 in Wuhan China, this novel Coronavirus disease(COVID-19) has spread worldwide taking not only epidemic proportions but with its rapid spread world health organization(WHO) was forced to declare it as a pandemic. The Severe Acute respiratory syndrome (SARS)-Coronavirus (CoV2) virus is responsible for clusters of severe respiratory illness that simulates acute respiratory syndrome that was what was initially. It is thought although that it is equivalent to the high altitude pulmonary oedema (HAPE), showing glass ground opacities in lungs. More experience is getting acquired with changes in treatment approaches from PEEP to avoid intubation and just ensure oxygen levels maintained. Human to human transmission through droplets, contaminated hands as well as surfaces, has been revealed with an incubation period varying from 2-14 days. Early diagnosis using reverse transcription polymerase chain reaction (RT-PCR) or computed tomography (CT) scan chest, quarantine, as well as supportive treatment are necessary for getting a cure.
In this review we have tried to analyze the epidemiology, diagnosis, isolation, and treatment, including antiviral drugs like remdesivir, favipiravir, chloroquine and hydroxychloroquine, corticosteroids, antibiotics, and ivermectin. With 3 successful cases of convalescent plasma achieved in USA, trials going on in India along with vaccines are also detailed in this article.

Keywords

COVID-19; Pandemic; Diagnosis; Isolation; Hydroxychloroquine; Ivermectin; Convalescent plasma

References

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel Coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. doi: 10.1056/NEJMoa2001017.
2. Lu R, Zhan X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterization and epidemiology of 2019 novel Coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. doi: 10.1016/S0140-6736(20)30251-8.
3. Xiao C, Li X, Liu S, Sang Y, Gao SJ, Gao F. HIV-1 did not contribute to the 2019-nCoV genome. Emerg Microbes Infect. 2020;9(1):378-81. doi: 10.1080/22221751.2020.1727299.
4. Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel Coronavirus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol. 2020;79:104212. doi: 10.1016/j.meegid.2020.104212.
5. Totura AL, Bovari S. Broad-spectrum Coronavirus antiviral drug discovery. Expert Opin Drug Discov. 2019;14(4):397-412. doi: 10.1080/17460441.2019.1581171.
6. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamic s in Wuhan, China, of novel Coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199-207. doi: 10.1056/NEJMoa2001316.
7. Backer JA, Klinkerberg D, Wallinga J. Incubation period of novel Coronavirus (2019-nCoV) infections among travelers from Wuhan, China, 20-28 January 2020. Euro Surveill. 2020;25(5). doi: 10.2807/1560-7917.ES.2020.25.5.2000062.
8. Bai Y, Yao I, Wei T, Tian T, Jin DY, Chen J, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020. doi: 10.1001/jama.2020.2565.
9. Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology. 2001;279(2):371-4. doi: 10.1006/viro.2000.0757.
10. Su S, Wong G, Shi W, Liu J, Lai AC, Zhou J, et al. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016; 24(6):490-502. doi: 10.1016/j.tim.2016.03.003.
11. Lu G, Wang Q, Gao GF. Bat-to-human: spike features determining ’host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 2015;23(8):468-78. doi: 10.1016/j.tim.2015.06.003.
12. Li F. Structure, Function of Coronavirus spike proteins. Annu Rev Virol.2016;3(1):237-61. doi: 10.1146/annurev-virology-110615-042301.
13. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of Coronavirus cell entry mediated by the viral spike protein. Viruses 2012;4(6):1011-33. doi: 10.3390/v4061011.
14. Pallesan J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, et al. Immunogenicity and Structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A. 2017;14(35):E7348-E7357. doi: 10.1073/pnas.1707304114.
15. Millet JK, Whittaker GR. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci U S A. 2014;111(42):15214. doi: 10.1073/pnas.1407087111.
16. Kirchdoerfer RN, Cottrell CN, Wang N, Pallesan J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531(7592):118-21. doi: 10.1038/nature17200.
17. Walls AC, Tortorici M, Bosch BJ, Frenz B, Rottier PJM, Di Malo F, et al. Cryo-electron microscopy structure of a Coronavirus spike glycoprotein trimer. Nature. 2016;531(7592):114-7. doi: 10.1038/nature16988.
18. Walls AC, Tortorici M, Frenz B, Snijder J, Li W, Roy FA, et al. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Molr Biol. 2016;23(10):899-905. doi: 10.1038/nsmb.3293.
19. Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res. 2017;27(1):119-29. doi: 10.1038/cr.2016.152.
20. Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun. 2017;8;15092. doi: 10.1038/ncomms15092.
21. Shang J, Zhang Y, Yang Y, Liu C, Geng Q, Luo C, et al. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike protein. PLoS Pathog. 2018;14(4):e1007009. doi: 10.1371/journal.ppat.1007009.
22. Walls AC, Tortorici M, Snijder J, Xiong X, Bosch BJ, Rey FA, et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci U S A. 2017;114(42):11157-62. doi: 10.1073/pnas.1708727114.
23. Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science. 2005;309(5742):1864-8. doi: 10.1126/science.1116480.
24. Song W, Gui M, Wang X, Wiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018;14(8):E1007236. doi: 10.1371/journal.ppat.1007236.
25. Wrapp D, Wang N, Kizzmekia S, Corbett,KS, Jory A, Goldsmith JA, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260-3. doi: 10.1126/science.abb2507.
26. Gupta MK, Vemula S, Donde R, Gouda G, Behera L, Vadde R. In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome corona virus envelope protein ion channel. J Biomol Struct Dyn. 2020;1-17. doi: 10.1080/07391102.2020.1751300.
27. To KK, Tang OT, Chik-Yan Yip C, Chan KH, Wu TC, Chan JMC, et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis. 2020. doi: 10.1093/cid/ciaa149.
28. Chan JF, Choi GK, Tsang AK, Tee KM, Lam HY, Yip CC, et al. Development and evaluation of novel real-time reverse transcription-PCR Assays with locked nucleic acid probes targeting leader sequences human-pathogenic coronaviruses. J Clin Microbiol. 2015;53(8):2722-6. doi: 10.1128/JCM.01224-15.
29. Huang P, Wang H, Cao Z, Jin H, Chi H, Zhao J, et al. A Rapid and Specific Assay for the detection of MERS-CoV. Front Microbiol. 2018;9:1101. doi: 10.3389/fmicb.2018.01101.
30. Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Lui Y, et al. Molecular diagnostic of a novel Coronavirus (2019-nCoV)causing an outbreak of pneumonia. Clin Chem. 2020;66(4):549-55. doi: 10.1093/clinchem/hvaa029.
31. Chan JF, Yip CC, To KK, Tang TH, Wong SC, Leung KH, et al. Improved Molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/Hel real-time reverse transcription-polymerase chain reaction assay validated in vitro and with clinical specimens. J Clin Microbiol. 2020. doi: 10.1128/JCM.00310-20.
32. Konrad R, Eberle U, Dangel A, Treis B, Berger A, Benga K, et al. Rapid establishment of laboratory diagnostics for the novel coronavirus SARS-CoV2 in Bavaria, Germany, February 20. Euro Surveill. 2020;25(9). doi: 10.2807/1560-7917.ES.2020.25.9.2000173.
33. Cordes AK, Heim A. Rapid random access detection of the novel SARS-Coronavirus-2 (SARS-CoV-2, previously 2019-nCoV) using an open access protocol for the Panther fusion. J Clin Virol 2020;125:104305. doi: 10.1016/j.jcv.2020.104305.
34. Liu R, Han H, Liu F, Lv Z, Wu K, Liu Y, et al. Positive rate of RT-PCR detection of SARS-CoV-2 infection in 4880 cases from one hospital in Wuhan, China, from Jan to Feb 2020. Clin Chim Acta. 2020;505:172-5. doi: 10.1016/j.cca.2020.03.009.
35. Zhang W, Du RH, Li B, Zhang XS, Yang XL, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386-9. doi: 10.1080/22221751.2020.1729071.
36. Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of Chest CT for COVID-19: comparison to RT-PCR. Radiology. 2020;200432. doi: 10.1148/radiol.2020200432.
37. Huang P, Liu T, Huang I, Liu H, Lei M, Xu W, et al. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. Radiology. 2020;295(1):22-3. doi: 10.1148/radiol.2020200330.
38. Cobb B, Simon CO, Stramer SL, Body B, Mitchell PS, Reisch N, etal. The cobas® 6800/8800 System: a new era of automation in Molecular diagnostics. Expert Rev Mol Diagn. 2017;17(2):167-80. doi: 10.1080/14737159.2017.1275962.
39. Pfefferle S, Reucher S, Norz D, Lutgehetmann M. Evaluation of a quantitative RT-PCR assay for the detection of emerging Coronavirus SARS-
CoV-2 using a high throughput system. Euro Surveill. 2020;25(9). doi: 10.2807/1560-7917.ES.2020.25.9.2000152.
40. Xie X, Zhong Z, Zhao W, Zheng C, Wang F, Liu J. Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing. Radiology. 2020;200343. doi: 10.1148/radiol.2020200343.
41. Xu X, Yu C, Qu J, Zhang L, Jiang S, Huang D, et al. Imaging and clinical features of patients with 20019 novel coronavirus SARS-CoV-2. Eur J Nucl Med Mol Imaging. 2020;47(5):1275-1280. doi: 10.1007/s00259-020-04735-9.
42. Ai T, Yang Z, Hou H, Zhan C, Chen C, Lv W, et al. Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases. Radiology. 2020;200642. doi: 10.1148/radiol.2020200642.
43. Das KM, Lee EY, Al-Jawder SE, Enam MA, Singh R, Skakni I, et al. Acute Middle East respiratory syndrome Coronavirus: Temporal lung changes observed on the chest radiographs of 55 patients. AJR Am J Roentgenol.2015;205(3):W267-74. doi: 10.2214/AJR.15.14445.
44. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT Imaging features of 2019 novel Coronavirus (2019-nCoV). Radiology. 2020;295(1):202-7. doi: 10.1148/radiol.2020200230.
45. Pan F, Ye T, Sun F, Gui S, Liang B, Li L, et al. Time course of lung changes on Chest CT during recovery from 2019 novel Coronavirus (COVID-19) pneumonia. Radiology. 2020;200370. doi: 10.1148/radiol.2020200370.
46. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020;20(4):425-34. doi: 10.1016/S1473-3099(20)30086-4.
47. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to moderate forms of the Coronavirus disease 2019 (COVID-19): A Multicenter European Study. Eur Arch Otorhinolaryngol. 2020. doi: 10.1007/s00405-020-05965-1.
48. Solaimanzadeh I. Acetazolamide, nifedipine and phosphodiesterase inhibitors: Rationale for Their Utilization as adjunctive Countermeasures in the Treatment of Coronavirus disease 2019 (COVID-19). Cureus. 2020;12(3):e7343. doi: 10.7759/cureus.7343.
49. Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, et al. Development and clinical applications of a Rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol. 2020. doi: 10.1002/jmv.25727.
50. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel Coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020. doi: 10.1001/jama.2020.1585.
51. Zhou P, Yang XL, Wang XL, Wang XG, Hu B, Zhang W, et al. A pneumonia outbreak associated with a new Coronavirus of probable bat origin. Nature 2020;579(7798):270-3. doi: 10.1038/s41586-020-2012-7.
52. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of Coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020;104(3):246-51. doi: 10.1016/j.jhin.2020.01.022.
53. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable in 2019-nCoV Infection. Front Med. 2020. doi: 10.1007/s11684-020-0754-0.
54. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and Clinical characteristics of 99 cases of Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7.
55. Wilder Smith A, Freedman DO. Isolation, quarantine, social distancing and community containment: pivotal role for old style public health measures in the novel Coronavirus (2019-nCoV) outbreak. J Travel Med. 2020;27(2). doi: 10.1093/jtm/taaa020.
56. Zhong NS, Zeng GQ. Pandemic planning in China: applying lessons from severe acute respiratory syndrome. Respirology. 2008;13(Suppl1):S33-5. doi: 10.1111/j.1440-1843.2008.01255.x.
57. Dashraath P, Jing Lin Jeslyn W, Mei Xian Karen L, Li Min L, Sarah L, Biswas A,et al. Coronavirus Disease 2019 (COVID-19) Pandemic and Pregnancy. Am J Obstet Gynaecol. 2020. doi: 10.1016/j.ajog.2020.03.021.
58. Chen N,Guo J, Wang C,Luo F,Yu X, Zhang W,etal.Clinical characteristics and intrauterine vertical transmission potential of COVID 19 infection in nine pregnant women:a retrospective review of medical records.Lancet 2020;395:507-13.
59. Schwartz DA, Graham AL. Potential maternal and infant outcomes from (Wuhan) Coronavirus 2019-nCoV infecting pregnant women: Lessons from SARS, MERS and other human Coronavirus infections. Viruses. 2020;12. doi: 10.3390/v12020194.
60. Update on the prevalence and control of novel Corona virus-induced pneumonia on Feb 21. Available from: http://www.nhc.gov.en/yzyg/s7653p//202002/8334A8326dd94d329df351d7da8aefc2/files/b218cfeb1bc54639af227f922bf6b817.pdf (accessed Feb 2020).
61. Stockman IJ, Bellamy R, Garner P. SARS: Systematic review of treatment effects .PLoS Med. 2006;3(9):e343. doi: 10.1371/journal.pmed.0030343.
62. Su B, Wang Y, Zhou R, Jiang T, Zhang H, Li Z, et al. Efficacy and tolerability of lopinavir/ritonavir-and efavirenz-based initial antiretroviral therapy in HIV-1 infected patients in a tertiary care hospital in Beijing, China. Front Pharmacol. 2019;10:1472. doi: 10.3389/fphar.2019.01472.
63. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings .Thorax. 2004;59(3):252-6. doi: 10.1136/thorax.2003.012658.
64. Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6(2):67-9. doi: 10.1016/S1473-3099(06)70361-9.
65. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71. doi: 10.1038/s41422-020-0282-0.
66. News: Abidol and darunavir can effectively inhibit coronavirus. Available from: http://www.sd.chinanews.com/2/2020/0205/70145.html. (Accessed Feb 2020).
67. Delang L, Abdelnahi R, Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res 2018;153:85-94. doi: 10.1016/j.antiviral.2018.03.003.
68. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(7):449-63. doi: 10.2183/pjab.93.027.
69. News. Available from: http://www.szdsyy.com/News/0a6c1e3d0-4cd1-867a-d5524bc59cd6.html (accessed Feb,2020).
70. Sheahan TP, Sims AC, Leist SR, Schäffer A, Won J, Brown AJ, et al. Comparative therapeutic efficacy of Remdesivir and combination lopinavir/ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11(1):222. doi: 10.1038/s41467-019-13940-6.
71. Holshue MI, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel Coronavirus in the United States. N Engl J Med. 2020;382(10):929-936. doi: 10.1056/NEJMoa2001191.
72. A Trial of Remdesivir in Adults With Mild and Moderate COVID-19. Available from: https://clinicaltrials.gov/ct2/show/NCT04252664.
73. A Trial of Remdesivir in Adults With Severe COVID-19. Available from: https://clinicaltrials.gov/ct2/show/NCT04257656.
74. Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMSPSS2 for entry into target cells. bioRxiv. 2020. doi: https://doi.org/10.1101/2020.01.31.929042.
75. Coleman CM, Sisk JM, Mingo RM, Nelson FA, White JM, Frieman MB. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome Coronavirus and Middle East respiratory syndrome Coronavirus fusion. J Virol. 2016;90(19):8924-933. doi: 10.1128/JVI.01429-16.
76. Shanghai Institute of Materia Medica Website, Chinese Academy of Sciences. A joint research team of the Shanghai Institute of Material Medica and Shanghai Tech University discover a group of old and traditional Chinese medicines that may be efficacious in treating the novel form of pneumonia. Available from: http://www.simm.ac.cn/xwzx/kydt/202001/t20200125_5494417.html
77. Dong L, Shasha S, Gao J. Discovering drugs to treat Coronavirus disease 2019 (COVID 19). Drug Discov Ther. 2020;14(1):58-60. doi: 10.5582/ddt.2020.01012.
78. González Canga A, Sahagún Prieto AM, Diez Liébana MJ, Fernández Martínez N, Sierra Vega M, García Vieitez JJ. The pharmacokinetics and interactions of Ivermectin in humans--a mini-review. AAPS J. 2008;10(1):42-6. doi: 10.1208/s12248-007-9000-9.
79. Wagstaff KM, et al. Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem J. 2012;443(3):851-6. doi: 10.1042/BJ20120150.
80. Wagstaff KM, Rawlinson SM, Hearps AC, Jans DA. An Alphascreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. J Biomol Screen. 2011;16(2):192-200. doi: 10.1177/1087057110390360.
81. Van der Watt PJ, Chi A, Stelma T, Stowell C, Strydom E, Carden S, et al. Targeting the nuclear import receptor Kpnβ-1 as an Anticancer therapeutic. Mol Cancer Ther. 2016;15(4):560-73. doi: 10.1158/1535-7163.MCT-15-0052.
82. Yang SNV, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, et al. The broad spectrum antiviral Ivermectin targets the host nuclear transport α/β1 heterodimer. Antiviral Res. 2020;177:104760. doi: 10.1016/j.antiviral.2020.
83. Jans DA, Martin AJ, Wagstaff KM. Inhibitors of nuclear transport. Curr Opin Cell Biol. 2019;58:50-60. doi: 10.1016/j.ceb.2019.01.001.
84. Lv C, Liu W, Wang B, Dang R, Qiu L, Ren J, et al. Ivermectin Inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and in vivo. Antiviral Res. 2018;159:55-62. doi: 10.1016/j.antiviral.2018.09.010.
85. Ketkar H, Yang L, Wormser GP, Wang P. Lack of efficacy of Ivermectin for prevention of a lethal Zika virus infection in a murine system. Diagn Microbiol Infect Dis. 2019;95(1):38-40. doi: 10.1016/j.diagmicrobio.2019.03.012.
86. Yamasmith E, Saleh-arong FA, Aviruntan P, Angkasekwinai N, Mairiang D, Wongsawat E, et al. Efficacy and safety of Ivermectin against Dengue infection: A Phase III, Randomized, Double Blind, placebo controlled trial. In the 34th Annual Meeting of the Royal College of Physicians of Thailand-Internal Medicine and One Health. 2018: Chonburi, Thailand. Available from: http://www.rcpt.org/abstractdb/media/abstract/CON2018/Best%20Resident27/BRA_77_Eakkawit.pdf
87. Wulan WN, Heydet D, Walker EJ, Gahan ME, Ghildyal R. Nucleocytoplasm transport of nucleocapsid proteins of enveloped RNA viruses. Front Microbiol. 2015;6:553. doi: 10.3389/fmicb.2015.00553.
88. Wurm T, Chen H, Hodgson T, Britton P, Brooks G, Hiscox JA. Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. J Virol. 2001;75(19):9345-56. doi: 10.1128/JVI.75.19.9345-9356.2001.
89. Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. J Virol. 2007; 81(18):9812-24. doi: 10.1128/JVI.01012-07.
90. Buonfrate D, Salas-Coronas J, Muñoz J, Maruri BT, Rodari P, Castelli F, et al. Multiple-dose versus single-dose Ivermectin for Strongyloides stercoralis infection (Strong Treat 1 to 4): a multicentre, open-label, phase3, randomised controlled superiority trial. Lancet Infect Dis. 2019;19(11):1181-90. doi: 10.1016/S1473-3099(19)30289-0.
91. Nicolas P, et al. Safety of oral Ivermectin during pregnancy: a systematic review and meta-analysis. Lancet Glob Health. 2020;8(1):e92-e100. doi: 10.1016/S2214-109X(19)30453-X.
92. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro, Antiviral Res. 2020; 104787. doi: 10.1016/j.antiviral.2020.104787.
93. Du L, He Y, Zhou Y, Liu S, Zheng SJ, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009;7(3):226-36. doi: 10.1038/nrmicro2090.
94. Agnandji ST, Huttner A, Zinser ME, Njuguna P, Dahlke C, Fernandes JF, et al. Phase 1 trials of rVSV Ebola Vaccine in Africa and Europe. N Engl J Med. 2016;374(17):1647-60. doi: 10.1056/NEJMoa1502924.
95. Zhang J, Zeng H, Gu J, Li H, Zheng L, Zou Q. Progress and prospects on Vaccine development against SARS-CoV-2.Vaccines(Basel) 2020;8(2). doi:1q0.3390/vaccines8020153.
96. Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw FM, Lim WS, et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015;211(1):80-90. doi: 10.1093/infdis/jiu396.
97. van Grienvesen J, Edwards T, De Lamballerie X, Semple MG, Gallian P, Baize S, et al. Evaluation of convalescent plasma for Ebola virus disease in Guinea. N Engl J Med. 2016;374(1):33-42. doi: 10.1056/NEJMoa1511812.
98. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new Coronavirus of probable bat origin. Nature 2020;579(7798):270-3. doi: 10.1038/s41586-020-2012-7.


Submitted date:
04/13/2020

Reviewed date:
04/17/2020

Accepted date:
04/20/2020

Publication date:
04/19/2020

5e9c3f3f0e882571779a32b5 iberoamericanjm Articles
Links & Downloads

Iberoam J Med

Share this page
Page Sections