Autopsy and Case Reports
https://app.periodikos.com.br/journal/autopsy/article/doi/10.4322/acr.2024.491
Autopsy and Case Reports
Autopsy Case Report

Thrombosis of the vasa vasorum of the large and medium size pulmonary artery and vein leads to pulmonary thromboembolism in COVID-19

Hubert Daisley; Oneka Acco; Martina Daisley; Dennecia George; Lilly Paul; Errol James; Arlene Rampersad; Farhaana Narinesingh; Ornella Humphrey; Johann Daisley; Melissa Nathan

Downloads: 3
Views: 436

Abstract

The vasa vasorum of the large pulmonary vessels is involved in the pathology of COVID-19. This specialized microvasculature plays a major role in the biology and pathology of the pulmonary vessel walls. We have evidence that thrombosis of the vasa vasorum of the large and medium-sized pulmonary vessels during severe COVID-19 causes ischemia and subsequent death of the pulmonary vasculature endothelium. Subsequent release of thrombi from the vasa interna into the pulmonary circulation and pulmonary embolism generated at the ischemic pulmonary vascular endothelium site, are the central pathophysiological mechanisms in COVID-19 responsible for pulmonary thromboembolism. The thrombosis of the vasa vasorum of the large and medium-sized pulmonary vessels is an internal event leading to pulmonary thromboembolism in COVID-19.

Keywords

COVID-19, Pulmonary Embolism, Vasa Vasorum, Thromboembolism

References

1 Platto S, Wang Y, Zhou J, Carafoli E. History of the COVID-19 pandemic: Origin, explosion, worldwide spreading. Biochem Biophys Res Commun. 2021;538:14-23. http://doi.org/10.1016/j.bbrc.2020.10.087. PMid:33199023.

2 World Health Organization. The true death toll of COVID-19. Estimating global excess mortality [Internet]. Geneva: WHO; 2021 [cited 2024 Mar 1]. Available from: https://www.who.int/data/stories/the-true-death-toll-of-covid-19-estimating-global-excess-mortality

3 World Health Organization. Number of COVID-19 cases reported to WHO [Internet]. Geneva: WHO; 2021 [cited 2024 Mar 1]. Available from: https://covid19.who.int/region/amro/country/tt

4 Natekar JP, Pathak H, Stone S, et al. Differential pathogenesis of SARS-CoV-2 variants of concern in human ACE2-expressing mice. Viruses. 2022;14(6):1139. http://doi.org/10.3390/v14061139. PMid:35746611.

5 Rosen A, Hartman M. What you need to know about JN.1, the latest COVID variant [Internet]. Baltimore: Johns Hopkins University; 2024 [cited 2024 Mar 1]. Available from: https://hub.jhu.edu/2024/01/12/jn1-dominant-variant-covid-surge/

6 Elizalde-Díaz JP, Miranda-Narváez CL, Martínez-Lazcano JC, Martínez-Martínez E. The relationship between chronic immune response and neurodegenerative damage in long COVID-19. Front Immunol. 2022;13:1039427. http://doi.org/10.3389/fimmu.2022.1039427. PMid:36591299.

7 Li C, He Q, Qian H, Liu J. Overview of the pathogenesis of COVID-19 (review). Exp Ther Med. 2021;22(3):1011. http://doi.org/10.3892/etm.2021.10444. PMid:34345293.

8 Daisley H Jr, Rampersad A, Daisley M, et al. COVID-19: a closer look at the pathology in two autopsied cases. Is the pericyte at the center of the pathological process in COVID-19. Autops Case Rep. 2021;11:e2021262. http://doi.org/10.4322/acr.2021.262. PMid:34307223.

9 Lamers MM, Haagmans BL. SARS-CoV-2 pathogenesis. Nat Rev Microbiol. 2022;20(5):270-84. http://doi.org/10.1038/s41579-022-00713-0. PMid:35354968.

10 Daisley H Jr, Rampersad A, Daisley M, et al. The vasa vasorum of the large pulmonary vessels are involved in COVID-19. Autops Case Rep. 2021;11:e2021304. http://doi.org/10.4322/acr.2021.304. PMid:34458172.

11 Bösmüller H, Matter M, Fend F, Tzankov A. The pulmonary pathology of COVID-19. Virchows Arch. 2021;478(1):137-50. http://doi.org/10.1007/s00428-021-03053-1.

12 Kommoss FKF, Schwab C, Tavernar L, et al. The pathology of severe COVID-19-related lung damage. Dtsch Arztebl Int. 2020;117(29-30):500-6. http://doi.org/10.3238/arztebl.2020.0500.

13 Gupta VK, Alkandari BM, Mohammed W, Tobar AM, Abdelmohsen MA. Ventilator associated lung injury in severe COVID-19 pneumonia patients. Case reports: ventilator associated lung injury in COVID-19. Eur J Radiol Open. 2020;8:100310. http://doi.org/10.1016/j.ejro.2020.100310. PMid:33364262.

14 Poor HD. Pulmonary thrombosis and thromboembolism in COVID-19. Chest. 2021;160(4):1471-80. http://doi.org/10.1016/j.chest.2021.06.016. PMid:34153340.

15 Martin AI, Rao G. COVID-19: a potential risk factor for acute pulmonary embolism. Methodist DeBakey Cardiovasc J. 2020;16(2):155-7. http://doi.org/10.14797/mdcj-16-2-155. PMid:32670476.

16 Suh YJ, Hong H, Ohana M, et al. Pulmonary Embolism and deep vein thrombosis in COVID-19: a systematic review and meta-analysis. Radiology. 2021;298(2):E70-80. http://doi.org/10.1148/radiol.2020203557.

17 De Cobelli F, Palumbo D, Ciceri F, et al. Pulmonary vascular thrombosis in COVID-19 pneumonia. J Cardiothorac Vasc Anesth. 2021;35(12):3631-41. http://doi.org/10.1053/j.jvca.2021.01.011. PMid:33518461.

18 Mandal AKJ, Kho J, Ioannou A, Van den Abbeele K, Missouris CG. COVID-19 and in situ pulmonary artery thrombosis. Respir Med. 2021;176:106176. http://doi.org/10.1016/j.rmed.2020.106176. PMid:33092932.

19 Cavagna E, Muratore F, Ferrari F. Pulmonary thromboembolism in COVID-19: venous thromboembolism or arterial thrombosis? Radiol Cardiothorac Imaging. 2020;2(4):e200289. http://doi.org/10.1148/ryct.2020200289. PMid:33778609.

20 Hanff TC, Mohareb AM, Giri J, Cohen JB, Chirinos JA. Thrombosis in COVID-19. Am J Hematol. 2020;95(12):1578-89. http://doi.org/10.1002/ajh.25982. PMid:32857878.

21 Miesbach W, Makris M. COVID-19: coagulopathy, risk of thrombosis, and the rationale for anticoagulation. Clin Appl Thromb Hemost. 2020;26:1076029620938149. http://doi.org/10.1177/1076029620938149. PMid:32677459.

22 Niculae CM, Hristea A, Moroti R. Mechanisms of COVID-19 associated pulmonary thrombosis: a narrative review. Biomedicines. 2023;11(3):929. http://doi.org/10.3390/biomedicines11030929. PMid:36979908.

23 Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1-13. http://doi.org/10.1016/j.trsl.2020.04.007. PMid:32299776.

24 Goddard SA, Tran DQ, Chan MF, Honda MN, Weidenhaft MC, Triche BL. Pulmonary vein thrombosis in COVID-19. Chest. 2021;159(6):e361-4. http://doi.org/10.1016/j.chest.2020.11.064. PMid:34099150.

25 Pasha AK, Rabinstein A, McBane RD 2nd. Pulmonary venous thrombosis in a patient with COVID-19 infection. J Thromb Thrombolysis. 2021;51(4):985-8. http://doi.org/10.1007/s11239-021-02388-5. PMid:33515360.

26 Birnhuber A, Fließer E, Gorkiewicz G, et al. Between inflammation and thrombosis: endothelial cells in COVID-19. Eur Respir J. 2021;58(3):2100377. http://doi.org/10.1183/13993003.00377-2021. PMid:33958433.

27 Ivanova EA, Orekhov AN. Cellular model of atherogenesis based on pluripotent vascular wall pericytes. Stem Cells Int. 2016;2016:7321404. http://doi.org/10.1155/2016/7321404. PMid:26880986.

28 Evans PC, Rainger GE, Mason JC, et al. Endothelial dysfunction in COVID-19: a position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc Res. 2020;116(14):2177-84. http://doi.org/10.1093/cvr/cvaa230. PMid:32750108.

29 Baile EM. The anatomy and physiology of the bronchial circulation. J Aerosol Med. 1996;9(1):1-6. http://doi.org/10.1089/jam.1996.9.1. PMid:10160199.

30 Galambos C, Bush D, Abman SH. Intrapulmonary bronchopulmonary anastomoses in COVID-19 respiratory failure. Eur Respir J. 2021;58(2):2004397. http://doi.org/10.1183/13993003.04397-2020. PMid:33863743.

31 Ai J, Hong W, Wu M, Wei X. Pulmonary vascular system: a vulnerable target for COVID-19. MedComm. 2021;2(4):531-47. http://doi.org/10.1002/mco2.94.

32 Rayner SG, Hung CF, Liles WC, Altemeier WA. Lung pericytes as mediators of inflammation. Am J Physiol Lung Cell Mol Physiol. 2023;325(1):L1-8. http://doi.org/10.1152/ajplung.00354.2022. PMid:37130806.

33 McQuaid C, Montagne A. SARS-CoV-2 and vascular dysfunction: a growing role for pericytes. Cardiovasc Res. 2023;119(16):2591-3. http://doi.org/10.1093/cvr/cvac143. PMid:36063106.

34 Cardot-Leccia N, Hubiche T, Dellamonica J, Burel-Vandenbos F, Passeron T. Pericyte alteration sheds light on micro-vasculopathy in COVID-19 infection. Intensive Care Med. 2020;46(9):1777-8. http://doi.org/10.1007/s00134-020-06147-7. PMid:32533198.

35 Phillippi JA. On vasa vasorum: a history of advances in understanding the vessels of vessels. Sci Adv. 2022;8(16):eabl6364. http://doi.org/10.1126/sciadv.abl6364. PMid:35442731.

36 Faa G, Gerosa C, Fanni D, et al. Aortic vulnerability to COVID-19: is the microvasculature of vasa vasorum a key factor? A case report and a review of the literature. Eur Rev Med Pharmacol Sci. 2021;25(20):6439-42. PMid:34730226.

37 Huang W, Richards DT, Kaczorowski JD, et al. Pulmonary artery vasa vasorum damage in severe COVID-19–induced pulmonary fibrosis. Ann Thorac Surg Short Reports. 2024. http://doi.org/10.1016/j.atssr.2023.12.019.

38 Gonzalez-Gonzalez FJ, Ziccardi MR, McCauley MD. Virchow’s triad and the role of thrombosis in COVID-Related stroke. Front Physiol. 2021;12:769254. http://doi.org/10.3389/fphys.2021.769254. PMid:34858214.

39 Mehta JL, Calcaterra G, Bassareo PP. COVID-19, thromboembolic risk, and Virchow’s triad: lesson from the past. Clin Cardiol. 2020;43(12):1362-7. http://doi.org/10.1002/clc.23460. PMid:33176009.

40 Daisley H. Pulmonary embolism as a cause of death. West Indian Med J. 1990;39(2):86-90. PMid:2402905.
 


Submitted date:
03/01/2024

Accepted date:
04/06/2024

Publication date:
05/22/2024

664e28b7a953954efe32f502 autopsy Articles
Links & Downloads

Autops Case Rep

Share this page
Page Sections