Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X8923
Acta Limnologica Brasiliensia
Original Article

Environmental monitoring of sediment quality and trace metal status in a tropical perennial river in South India: an exploration using multivariate analysis

Monitoramento ambiental da qualidade dos sedimentos e do status dos vestígios de metais em um rio tropical perene no sul da Índia: uma exploração usando análise multivariada

Dani Benchamin; Sreejai Raghavan; Arya Madhu Sajidevi

Downloads: 0
Views: 726

Abstract

Aim: The Kallada River is exposed to several kinds of pollution from domestic, civic, recreational, and agricultural activities and human settlements. The objectives of the study were to assess sediment quality, especially the trace metal concentration and to compare with the previous reports on the sources of pollutants in the Kallada River.

Methods: A total of 12 sediment variables including the following metals: iron (Fe), manganese (Mn), chromium (Cr), and zinc (Zn) were analyzed. Atomic Absorption Spectrophotometer (AAS) was used to detect trace metal concentration in the sediment samples. Statistical tools such as Pearson’s correlation, Principal component analysis (PCA), and Cluster analysis (CA) were employed to analyze the data and source of pollutants.

Results: This investigation indicated that Fe was the most accumulated element in the sediments, and the midstream (K6 and K10) and downstream sites (K11 to K15) showed a much higher concentration level than the upstream sites. The concentrations of trace metals in sediment samples followed the order Fe> Mn> Cu>Zn.

Conclusions: The present study concluded that major sources of pollutants were sewage and civic effluents and agricultural discharges. These may cause a severe threat to the Kallada River and health risk to the local populations, which rely on the river, primarily for drinking purposes. Hence, appropriate conservation policies to reduce pollution are therefore essential.

Keywords

sediment quality, trace metal, Kallada river, anthropogenic activities, Ashtamudi estuary

Resumo

Objetivo: O Rio Kallada está exposto a vários tipos de poluição decorrentes de atividades domésticas, cívicas, recreativas, agrícolas e assentamentos humanos. Os objetivos do estudo foram avaliar a qualidade do sedimento, especialmente a concentração de metais traços, e comparar com relatórios anteriores sobre as fontes de poluentes no Rio Kallada, India.

Métodos: Um total de 12 descritores de sedimento, incluindo os seguintes metais: ferro (Fe), manganês (Mn), cromo (Cr) e zinco (Zn), foram analisados. Um espectrofotômetro de absorção atômica foi usado para detectar a concentração de metais traços nas amostras de sedimento. Correlação de Pearson, análise de componentes principais (PCA) e análise de agrupamento (CA) foram usadas para analisar os dados e fontes de poluentes.

Resultados: Esta pesquisa indicou que o Fe foi o elemento mais acumulado nos sedimentos, e os locais de meio do rio (K6 e K10) e jusante (K11 a K15) mostraram um nível de concentração muito mais alto do que os locais a montante. As concentrações de metais traços nas amostras de sedimento seguiram a ordem Fe > Mn > Cu > Zn.

Conclusões: O presente estudo concluiu que as principais fontes de poluentes foram esgotos, efluentes domésticos e descargas agrícolas. Estes podem representar uma ameaça severa ao Rio Kallada e riscos à saúde das populações locais, que dependem principalmente do rio para fins de consumo de água. Portanto, políticas de conservação apropriadas para reduzir a poluição são essenciais.

Palavras-chave

qualidade do sedimento, metais traço, rio Kallada, atividades antropogênicas, estuário Ashtamudi

References

Achi, C.G., Omoniyi, A.M., Coker, A.O., & Sridhar, M.K.C., 2021. Multivariate analysis of sediment quality in River Ogbere, Ibadan, South-West Nigeria. H2Open J 4(1), 1-11. http://dx.doi.org/10.2166/h2oj.2021.057.

Adarsh, S., Dharan, S.D., & Anuja, P.K., 2018. Analyzing the hydrologic variability of Kallada River, India using continuous wavelet transform and fractal theory. Water Conserv. Sci. Eng 3(4), 305-319. http://dx.doi.org/10.1007/s41101-018-0060-8.

Aju, C.D., Reghunath, R., Prasannakumar, V., & Chandran, S., 2019. Terrain characteristics and their influence on the temporal behaviour of hydraulic heads in Kallada River Basin, Kerala. J. Geol. Soc. India 93(1), 61-67. http://dx.doi.org/10.1007/s12594-019-1123-y.

Asha, R., & Joseph, M.L., 2017. Seasonal variation of heavy metals in selected stations of Periyar River at Ernakulam district, Kerala, India. J Pharm Biol Sci. (Online) 12(4), 14-24. Retrieved in 2023, October 3, from https://www.iosrjournals.org/iosr-jpbs/papers/Vol12-issue4/Version-7/C1204071424.pdf

Bashir, I., Lone, F. A., Bhat, R. A., Mir, S. A., Dar, Z. A., & Dar, S. A., 2020. Concerns and threats of contamination on aquatic ecosystems. In: Hakeem, K., Bhat, R., & Qadri, H., eds. Bioremediation and biotechnology: sustainable approaches to pollution degradation. Cham: Springer, 1-26. http://dx.doi.org/10.1007/978-3-030-35691-0_1.

Baxa, M., Musil, M., Kummel, M., Hanzlík, P., Tesařová, B., & Pechar, L., 2021. Dissolved oxygen deficits in a shallow eutrophic aquatic ecosystem (fishpond)-Sediment oxygen demand and water column respiration alternately drive the oxygen regime. Sci. Total Environ. 766, 142647. PMid:33082047. http://dx.doi.org/10.1016/j.scitotenv.2020.142647.

Bussi, G., Darby, S.E., Whitehead, P.G., Jin, L., Dadson, S.J., Voepel, H.E., Vasilopoulos, G., Hackney, C.R., Hutton, C., Berchoux, T., Parsons, D.R., & Nicholas, A., 2021. Impact of dams and climate change on suspended sediment flux to the Mekong delta. Sci. Total Environ. 755(Pt 1), 142468. PMid:33032131. http://dx.doi.org/10.1016/j.scitotenv.2020.142468.

Catianis, I., Secrieru, D., Pojar, I., Grosu, D., Scrieciu, A., Pavel, A.B., & Vasiliu, D., 2018. Water quality, sediment characteristics and benthic status of the Razim-Sinoie lagoon system, Romania. Open Geosci. 10(1), 12-33. http://dx.doi.org/10.1515/geo-2018-0002.

Chakrapani, G.J., & Veizer, J., 2006. Source of dissolved sulphate in the Alakananda-Bhagirathi rivers in the Himalayas. Curr. Sci. 90(4), 500-503.

Chon, H.S., Ohandja, D.G., & Voulvoulis, N., 2012. The role of sediments as a source of metals in river catchments. Chemosphere 88(10), 1250-1256. PMid:22546630. http://dx.doi.org/10.1016/j.chemosphere.2012.03.104.

Copaja, S.V., & Muñoz, F.J., 2018. Heavy metals concentration in sediment of Lluta river basin. J. Chil. Chem. Soc. 63(1), 3878-3883. http://dx.doi.org/10.4067/s0717-97072018000103878.

Custodio, M., Fow, A., Chanamé, F., Orellana-Mendoza, E., Peñaloza, R., Alvarado, J.C., Cano, D., & Pizarro, S., 2021. Ecological risk due to heavy metal contamination in sediment and water of natural wetlands with tourist influence in the central region of Peru. Water 13(16), 2256. http://dx.doi.org/10.3390/w13162256.

Dhamodharan, A., Abinandan, S., Aravind, U., Ganapathy, G.P., & Shanthakumar, S., 2019. Distribution of metal contamination and risk indices assessment of surface sediments from Cooum River, Chennai, India. Int. J. Environ. Res. 13(5), 853-860. http://dx.doi.org/10.1007/s41742-019-00222-8.

Dhanakumar, S., & Mohanraj, R., 2013. Fractionation of iron in river-bed sediments: Implications for the assessment of environmental integrity of the Cauvery delta region, India. In: Ramkumar, M., ed. On a sustainable future of the earth’s natural resources. Berlin: Springer, 123-137. http://dx.doi.org/10.1007/978-3-642-32917-3_6.

Dharan, R.S., & William, D.S., 2015. Seasonal variation in heavy metal pollution at Pallathuruthy: a converging point of Pamba and Vembanad Lake, Kerala, South India. Int. J. Sci. Res. 6(4), 1520-1525.

Ebadi, A.G., & Hisoriev, H., 2018. Physicochemical characterization of sediments from Tajan river basin in the northern Iran. Toxicol. Environ. Chem. 100(5-7), 540-549. http://dx.doi.org/10.1080/02772248.2018.1460929.

El-Amier, Y.A., Zahran, M.A., & Al-Mamoori, S.O., 2015. Environmental changes along Damietta branch of the River Nile, Egypt. J. Environ. Sci. 44, 235-255.

Garcia, X.F., Schnauder, I., & Pusch, M.T., 2012. Complex hydromorphology of meanders can support benthic invertebrate diversity in rivers. Hydrobiologia 685(1), 49-68. http://dx.doi.org/10.1007/s10750-011-0905-z.

Gaur, V.K., Gupta, S.K., Pandey, S.D., Gopal, K., & Misra, V., 2005. Distribution of heavy metals in sediment and water of river Gomti. Environ. Monit. Assess. 102(1-3), 419-433. PMid:15869200. http://dx.doi.org/10.1007/s10661-005-6395-6.

George, P., & Joseph, S., 2017. Appraisal of nutrient distribution in the surface water and bed sediments of a small mountainous river. Environ. Monit. Assess. 189(4), 183. PMid:28342051. http://dx.doi.org/10.1007/s10661-017-5874-x.

Hammer, Ø., & Harper, D.A., 2001. Past: paleontological statistics software package for educaton and data anlysis r. Palaeont. Electr. (Online) 4(1), 1. Retrieved in 2023, October 3, from http://palaeo-electronica.org/2001_1/past/issue1_01.htm

Hasaballah, A., Hegazy, T., Ibrahim, M., & El-Emam, D., 2019. Assessment of water and sediment quality of the river Nile, Damietta Branch, Egypt. Egypt. J. Aquat. Biol. Fish. 23(5), 55-65. http://dx.doi.org/10.21608/ejabf.2019.64835.

Herath, I.K., Wu, S., Ma, M., & Ping, H., 2022. Heavy metal toxicity, ecological risk assessment, and pollution sources in a hydropower reservoir. Environ. Sci. Pollut. Res. Int. 29(22), 32929-32946. PMid:35020150. http://dx.doi.org/10.1007/s11356-022-18525-3.

Hou, D., He, J., Lü, C., Sun, Y., Zhang, F., & Otgonbayar, K., 2013. Effects of environmental factors on nutrients release at sediment-water interface and assessment of trophic status for a typical shallow lake. ScientificWorldJournal 2013, 716342. PMid:24023535. http://dx.doi.org/10.1155/2013/716342.

Hussain, J., Husain, I., Arif, M., & Gupta, N., 2017. Studies on heavy metal contamination in Godavari river basin. Appl. Water Sci. 7(8), 4539-4548. http://dx.doi.org/10.1007/s13201-017-0607-4.

Iordache, A.M., Nechita, C., Zgavarogea, R., Voica, C., Varlam, M., & Ionete, R.E., 2022. Accumulation and ecotoxicological risk assessment of heavy metals in surface sediments of the Olt River, Romania. Sci. Rep. 12(1), 880. PMid:35042928. http://dx.doi.org/10.1038/s41598-022-04865-0.

Jackson, M., 1967. Soil chemical analysis (Online). New Delhi: Prentice Hall of India. Retrieved in 2023, October 3, from https://www.scirp.org/reference/ReferencesPapers?ReferenceID=105097

Jennerjahn, T.C., Soman, K., Ittekkot, V., Nordhaus, I., Sooraj, S., Priya, R.S., & Lahajnar, N., 2008. Effect of land use on the biogeochemistry of dissolved nutrients and suspended and sedimentary organic matter in the tropical Kallada River and Ashtamudi estuary, Kerala, India. Biogeochemistry 90(1), 29-47. http://dx.doi.org/10.1007/s10533-008-9228-1.

Jia, L., Yu, K.X., Li, Z.B., Li, P., Zhang, J.Z., Wang, A.N., Ma, L., Xu, G., & Zhang, X., 2022. Temporal and spatial variation of rainfall erosivity in the Loess Plateau of China and its impact on sediment load. Catena 210, 105931. http://dx.doi.org/10.1016/j.catena.2021.105931.

Jolliffe, I.T., & Cadima, J., 2016. Principal component analysis: a review and recent developments. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 374(2065), 20150202. PMid:26953178. http://dx.doi.org/10.1098/rsta.2015.0202.

Kadam, A., Wagh, V., Umrikar, B., & Sankhua, R., 2020. An implication of boron and fluoride contamination and its exposure risk in groundwater resources in semi-arid region, Western India. Environ. Dev. Sustain. 22(7), 7033-7056. http://dx.doi.org/10.1007/s10668-019-00527-w.

Kafilat Adebola, B.A., Joseph Kayode, S., & Adebayo Akeem, O., 2018. Integrated assessment of the heavy metal pollution status and potential ecological risk in the Lagos Lagoon, South West, Nigeria. Hum. Ecol. Risk Assess. 24(2), 377-397. http://dx.doi.org/10.1080/10807039.2017.1384694.

Kashid, J.P., Patil, A.K., Samant, J.S., & Raut, P.D., 2009. Seasonal variation in some metals of inshore waters of Malvan, Maharashtra. Nat. Environ. Pollut. Technol. 8(2), 261-266.

Khan, R., Saxena, A., & Shukla, S., 2020. Evaluation of heavy metal pollution for River Gomti, in parts of Ganga Alluvial Plain, India. SN Appl. Sci. 2(8), 1451. http://dx.doi.org/10.1007/s42452-020-03233-9.

Khuman, S.N., Bharat, G., & Chakraborty, P., 2020. Spatial distribution and sources of pesticidal persistent organic pollutants in the Hooghly riverine sediment. Environ. Sci. Pollut. Res. Int. 27(4), 4137-4147. PMid:31828711. http://dx.doi.org/10.1007/s11356-019-06973-3.

Kumar, M., Goswami, R., Awasthi, N., & Das, R., 2019. Provenance and fate of trace and rare earth elements in the sediment-aquifers systems of Majuli River Island, India. Chemosphere 237, 124477. PMid:31394438. http://dx.doi.org/10.1016/j.chemosphere.2019.124477.

Kumar, M.R., Krishnan, K.A., Vimexen, V., Faisal, A.K., Mohind, M., & Arun, V., 2022. Heavy metal impression in surface sediments and factors governing the fate of macrobenthic communities in tropical estuarine ecosystem, India. Environ. Sci. Pollut. Res. Int. 29(25), 38567-38590. PMid:35080727. http://dx.doi.org/10.1007/s11356-021-18394-2.

Kumar, V., Sharma, A., Pandita, S., Bhardwaj, R., Thukral, A.K., & Cerda, A., 2020. A review of ecological risk assessment and associated health risks with heavy metals in sediment from India. Int. J. Sediment Res. 35(5), 516-526. http://dx.doi.org/10.1016/j.ijsrc.2020.03.012.

Leibowitz, S.G., Wigington Junior, P.J., Schofield, K.A., Alexander, L.C., Vanderhoof, M.K., & Golden, H.E., 2018. Connectivity of streams and wetlands to downstream waters: an integrated systems framework. J. Am. Water Resour. Assoc. 54(2), 298-322. PMid:30078985. http://dx.doi.org/10.1111/1752-1688.12631.

Lola Catherine, V., & Mary Helen, H., 2018. Studies on the monthly variation of sediment parameters of Manakudy estuary with adjoining rivers, South West coast of India. Int J Creat Res Thought 6(1), 1-5.

Melki, M., Isnansetyo, A., Widada, J., & Murwantoko, M., 2018. Distribution of ammonium-oxidizing bacteria in sediment with relation to water quality at the Musi River, Indonesia. Hayati J. Biosci. 25(4), 198-205. http://dx.doi.org/10.4308/hjb.25.4.198.

Mohan, U., & Krishnakumar, A., 2022. Geochemical aspects and contamination evaluation of major and trace elements in the sediments of Kallada river, southern Western Ghats, India. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 57(4), 258-267. PMid:35354364. http://dx.doi.org/10.1080/10934529.2022.2053450.

Mukhopadhyay, M., Sampath, S., Muñoz-Arnanz, J., Jiménez, B., & Chakraborty, P., 2020. Plasticizers and bisphenol A in Adyar and Cooum riverine sediments, India: occurrences, sources and risk assessment. Environ. Geochem. Health 42(9), 2789-2802. PMid:31974692. http://dx.doi.org/10.1007/s10653-020-00516-3.

Müller, A., Österlund, H., Marsalek, J., & Viklander, M., 2020. The pollution conveyed by urban runoff: a review of sources. Sci. Total Environ. 709, 136125. PMid:31905584. http://dx.doi.org/10.1016/j.scitotenv.2019.136125.

Nair, V.M., & Kumar, R.B., 2019. Assessment of heavy metal concentration in river sediments along Vamanapuram River Basin, South Kerala, India. Nat. Environ. Pollut. Technol. 18(2), 593-597.

National Bureau of Soil Survey - NBSS, 2006. Soil series of Kerala. Nagpur: NBSS, NBSS Publications, vol. 136.

Pandey, J., & Singh, R., 2017. Heavy metals in sediments of Ganga River: up-and downstream urban influences. Appl. Water Sci. 7(4), 1669-1678. http://dx.doi.org/10.1007/s13201-015-0334-7.

Pandey, L.K., Park, J., Son, D.H., Kim, W., Islam, M.S., Choi, S., Lee, H., & Han, T., 2019. Assessment of metal contamination in water and sediments from major rivers in South Korea from 2008 to 2015. Sci. Total Environ. 651(Pt 1), 323-333. PMid:30240916. http://dx.doi.org/10.1016/j.scitotenv.2018.09.057.

Reeves, J.L., & Liebig, M.A., 2016. Depth matters: soil pH and dilution effects in the northern Great Plains. Soil Sci. Soc. Am. J. 80(5), 1424-1427. http://dx.doi.org/10.2136/sssaj2016.02.0036n.

Reid, M.K., & Spencer, K.L., 2009. Use of principal components analysis (PCA) on estuarine sediment datasets: the effect of data pre-treatment. Environ. Pollut. 157(8-9), 2275-2281. PMid:19410344. http://dx.doi.org/10.1016/j.envpol.2009.03.033.

Singh, A., Singh, D.R., & Yadav, H.K., 2017. Impact and assessment of heavy metal toxicity on water quality, edible fishes and sediments in lakes: a review. Trends Biosci. 10(8), 1551-1560.

Sobha, V., Abhilash, P.R., Santhosh, S., Hashim, K.A., & Valsalakumar, E., 2009. Geochemistry of different aquatic systems in Thiruvananthapuram, Southern Kerala. Ecoscan 2(2), 223-228.

Sreelakshmi, C.D., & Chinnamma, M.A., 2018. Quality assessment of sediments in bharathapuzha with special reference to phosphate fractionation and metallic contamination. Int. J. Eng. Adv. Technol. 5(4), 20-29.

Sreelash, K., Sharma, R.K., Gayathri, J.A., Upendra, B., Maya, K., & Padmalal, D., 2018. Impact of rainfall variability on river hydrology: a case study of Southern Western Ghats, India. J. Geol. Soc. India 92(5), 548-554. http://dx.doi.org/10.1007/s12594-018-1065-9.

Tsai, L.J., Ho, S.T., & Yu, K.C., 2003. Correlations of extractable heavy metals with organic matters in contaminated river sediments. Water Sci. Technol. 47(9), 101-107. PMid:12830947. http://dx.doi.org/10.2166/wst.2003.0502.

Ustaoğlu, F., & Tepe, Y., 2019. Water quality and sediment contamination assessment of Pazarsuyu Stream, Turkey using multivariate statistical methods and pollution indicators. Int. Soil Water Conserv. Res. 7(1), 47-56. http://dx.doi.org/10.1016/j.iswcr.2018.09.001.

van Veen, J., 1933. Onderzoek naar het zandtransport von rivieren. De Ing. B 48, 151-159.

Venkatramanan, S., Chung, S.Y., Ramkumar, T., Gnanachandrasamy, G., & Kim, T.H., 2015. Evaluation of geochemical behavior and heavy metal distribution of sediments: the case study of the Tirumalairajan river estuary, southeast coast of India. Int. J. Sediment Res. 30(1), 28-38. http://dx.doi.org/10.1016/S1001-6279(15)60003-8.

Zhang, F., Zeng, C., Wang, G., Wang, L., & Shi, X., 2021. Runoff and sediment yield in relation to precipitation, temperature and glaciers on the Tibetan Plateau. Int. Soil Water Conserv. Res. 10(2), 197-207. http://dx.doi.org/10.1016/j.iswcr.2021.09.004.
 


Submitted date:
10/03/2023

Accepted date:
03/12/2024

Publication date:
04/09/2024

66158697a9539557574e7545 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections