Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X8422
Acta Limnologica Brasiliensia
Original Article

Rapid Assessment Protocol for sandstone headwater streams: a versatile and effective environmental assessment tool

Protocolo de Avaliação Rápida para riachos que drenam por formações areníticas: uma ferramenta de avaliação versátil e efetiva

Vivian de Mello Cionek; Gustavo Henrique Zaia Alves; Patricia Almeida Sacramento; Antonio Carlos Beaumord; Evanilde Benedito

Downloads: 0
Views: 480

Abstract

Aim: In this study we validated a tool to assess and monitor streams ecosystems to subsidize future research, governmental surveillance and citizen science activities. Our primary objective was to (i) provide improvements and adaptations of the Rapid Assessment Protocol (RAP) proposed by Cionek et al. (2011) and provide a new RAP, and then (ii) evaluate the association among the RAP scores and limnological parameters.

Methods: The RAP was adapted to streams draining through a sandstone geological formation, and the final validation process was conducted in 30 streams. We used linear models and correlation analysis to understand the association of the RAP scores with in-stream limnological and physical parameters (n=30) and nutrient concentrations in the water (n=9), respectively. Two parameters have been adjusted according to our professional’s judgment which have provided feedback since 2011.

Results: The RAP scores explained 29% of the variability of in-stream limnological and physical characteristics of the streams. Streams with higher RAP scores were those with higher dissolved oxygen and higher depths. Streams with lower RAP scores were those with higher widths, conductivity, and turbidity. Streams with higher orthophosphate and ammonium loads were those with the predominance of slow and shallow flow regimes, while streams with higher nitrate concentration were those with straight channels. Limnological and physical indicators showed the same tendency of ecosystems quality (degradation or preservation), and yet are complementary because they evaluate distinct features of the system.

Conclusions: The RAP adapted for the Arenito Caiuá streams provide a good interpretation on the physical habitat features of streams and can be used both as a single diagnostic and monitoring environmental tool or a complementary tool along with limnological and biotic parameters.

Keywords

sand bottom, physical habitat assessment, RAP, wadable stream, Atlantic Forest

Resumo

Objetivo: Neste estudo validamos uma ferramenta para avaliar e monitorar riachos para subsidiar pesquisas, monitoramento para gestão e ciência cidadã. Nosso principal objetivo foi (i) proporcionar melhorias e adaptações do Protocolo de Avaliação Rápida (PAR) proposto por Cionek et al. (2011), criando uma nova versão do PAR e então (ii) avaliar a associação entre os escores do PAR e parâmetros limnológicos.

Métodos: O PAR foi adaptado para riachos que drenam por formação geológica arenítica, e o processo de validação final foi realizado em 30 riachos. Utilizamos modelos lineares e análise de correlação para entender a associação dos escores de PAR com parâmetros limnológicos e físicos no riacho (n=30) e concentrações de nutrientes na água (n=9), respectivamente. Dois parâmetros foram ajustados de acordo com o julgamento de nossos profissionais, que fornecem feedback de aplicação desde 2011.

Resultados: As pontuações do PAR explicaram 29% da variabilidade das características limnológicas e físicas dos riachos. Os riachos com pontuações mais altas foram aqueles com maior oxigênio dissolvido e profundidade. Os riachos com pontuações mais baixas foram aqueles com maiores larguras, condutividade e turbidez. Os riachos com maiores cargas de ortofosfato e amônio foram aqueles com predominância de regimes de fluxo lento e raso, enquanto os riachos com maior concentração de nitrato foram aqueles com canais retilíneos. Os indicadores limnológicos e físicos apresentam a mesma tendência de indicação de qualidade dos ecossistemas (degradação ou preservação), mas são complementares porque avaliam características distintas do sistema.

Conclusões: O PAR adaptado para os riachos do Arenito Caiuá fornece uma boa interpretação sobre as características físicas do habitat dos riachos e pode ser usado tanto como uma ferramenta única de diagnóstico e monitoramento ambiental ou como uma ferramenta complementar juntamente com parâmetros limnológicos e bióticos.

Palavras-chave

substrato arenoso, avaliação física do habitat, PAR, riachos de pequena ordem, Mata Atlântica

References

Ávila, M.P., Carvalho, R.N., Casatti, L., Simião-Ferreira, J., de Morais, L.F., & Teresa, F.B., 2018. Metrics derived from fish assemblages as indicators of environmental degradation in Cerrado streams. Zoologia 35, 1-8. http://doi.org/10.3897/zoologia.35.e12895.

Barbour, M.T., Gerritsen, J., Snyder, B.D., & Stribling, J.B., 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water, 2 ed., EPA 841-B-99-002.

Bentos, A.B., Gallo, A.D.S., Guimarães, N.D.F., de Souza, M.D.B., Stolf, R., & Borges, M.T.M.R., 2018. Rapid assessment of habitat diversity along the Araras Stream, Brazil. Floresta Ambient. 25(1), e20160024. http://doi.org/10.1590/2179-8087.002416.

Bjorkland, R., Pringle, C.M., & Newton, B., 2001. A stream visual assessment protocol (SVAP) for riparian landowners. Environ. Monit. Assess. 68(2), 99-125. PMid:11411146. http://doi.org/10.1023/A:1010743124570.

Brovini, E.M., de Deus, B.C.T., Vilas-Boas, J.A., Quadra, G.R., Carvalho, L., Mendonça, R.F., Pereira, R.O., & Cardoso, S.J., 2021. Three-bestseller pesticides in Brazil: freshwater concentrations and potential environmental risks. Sci. Total Environ. 771, 144754. PMid:33736156. http://doi.org/10.1016/j.scitotenv.2020.144754.

Callisto, M., Ribeiro, A., Santana, V., França, J., Ligeiro, R., Ferreira, W., Silva, D., Castro, D., Tupinambás, T.H., Santana, D., Souza, B., Gonçalves, F., Rodrigues, L., Andrade, C.B., Sales, S.C.M., & Souza, R., 2011. Rapid Ecological Assessment of benthic indicators of water quality: a successful capacity-building experience for Brazilian postgraduate students in ecology. Braz. J. Biol. 71(4), 937-947. http://doi.org/10.1590/S1519-69842011000500014.

Campos, J.B., Romagnolo, M.B., & Souza, M.C., 2000. Structure, composition and spatial distribution of tree species in a remnant of the semideciduous seasonal Alluvial Forest of the upper Paraná River Floodplain. Braz. Arch. Biol. Technol. 43(2), 185-194. http://doi.org/10.1590/S1516-89132000000200008.

Carvalho, D.R., Flecker, A.S., Alves, C.B.M., Sparks, J.P., & Pompeu, P.S., 2019. Trophic responses to aquatic pollution of native and exotic livebearer fishes. Sci. Total Environ. 681, 503-515. PMid:31128341. http://doi.org/10.1016/j.scitotenv.2019.05.092.

Casatti, L., Ferreira, C.P., & Carvalho, F.R., 2009. Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins. Hydrobiologia 632(1), 273-283. http://doi.org/10.1007/s10750-009-9849-y.

Casatti, L., & Ortigossa, C., 2021. Avaliação da integridade biótica de riachos a partir da ictiofauna. Oecol. Aust. 25(2), 531-545. http://doi.org/10.4257/oeco.2021.2502.19.

Cebrian, J., & Lartigue, J., 2004. Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol. Monogr. 74(2), 237-259. http://doi.org/10.1890/03-4019.

Chellaiah, D., & Yule, C.M., 2018. Effect of riparian management on stream morphometry and water quality in oil palm plantations in Borneo. Limnologica. 69, 72-80. http://doi.org/10.1016/j.limno.2017.11.007.

Cionek, V.M., 2016. Estrutura trófica e processamento foliar em riachos sob influência do uso do solo. Maringá: Universidade Estadual de Maringá.

Cionek, V.M., Beaumord, A.C., & Benedito, E., 2011. Protocolo de avaliação rápida do ambiente para riachos inseridos na região do Arenito Caiuá – Noroeste do Paraná. Maringá: EDUEM.

Cionek, V.M., Fogaça, F.N.O., Moulton, T.P., Pazianoto, L.H.R., Landgraf, G.O., & Benedito, E., 2021. Influence of leaf miners and environmental quality on litter breakdown in tropical headwater streams. Hydrobiologia 848(6), 1311-1331. http://doi.org/10.1007/s10750-021-04529-6.

Cooke, H.A., & Zack, S., 2009. Use of standardized visual assessments of riparian and stream condition to manage riparian bird habitat in Eastern Oregon. Environ. Manage. 44(1), 173-184. PMid:18574622. http://doi.org/10.1007/s00267-008-9160-0.

Connolly, N.M., Pearson, R.G., & Pearson, B.A., 2016. Riparian vegetation and sediment gradients determine invertebrate diversity in streams draining an agricultural landscape. Agr. Ecosyst. Environ. 221(1), 163-173. http://doi.org/10.1016/j.agee.2016.01.043.

Dala-Corte, R.B., Melo, A.S., Siqueira, T., Bini, L.M., Martins, R.T., Cunico, A.M., Pes, A.M., Magalhães, A.L., Godoy, B.S., Leal, C.G., Monteiro-Júnior, C.S., Stenert, C., Castro, D.M.P., Macedo, D.R., Lima-Júnior, D.P., Gubiani, E.A., Massariol, F.C., Teresa, F.B., Becker, F.G., Souza, F.N., Valente-Neto, F., Souza, F.L., Salles, F.F., Brejão, G.L., Brito, J.G., Vitule, J.R.S., Simião-Ferreira, J., Dias-Silva, K., Albuquerque, L., Juen, L., Maltchik, L., Casatti, L., Montag, L., Rodrigues, M.E., Callisto, M., Nogueira, M.A.M., Santos, M.R., Hamada, N., Pamplin, P.A.Z., Pompeu, P.S., Leitão, R.P., Ruaro, R., Mariano, R., Couceiro, S.R.M., Abilhoa, V., Oliveira, V.C., Shimano, Y., Moretto, Y., Súarez, Y.R., & Roque, F.O., 2020. Thresholds of freshwater biodiversity in response to riparian vegetation loss in the Neotropical region. J. Appl. Ecol. 571(7), 1391-1402. http://doi.org/10.1111/1365-2664.13657.

Doll, B., Jennings, G., Spooner, J., Penrose, D., Usset, J., Blackwell, J., & Fernandez, M., 2016. Can rapid assessments predict the biotic condition of restored streams? Water 8(4), 1-22. http://doi.org/10.3390/w8040143.

Dudgeon, D., 2008. Tropical Stream Ecology. Hong Kong: Academic Press.

Englert, D., Zubrod, J.P., Schulz, R., & Bundschuh, M., 2015. Variability in ecosystem structure and functioning in a low order stream: implications of land use and season. Sci. Total Environ. 538, 341-349. PMid:26312408. http://doi.org/10.1016/j.scitotenv.2015.08.058.

Fiori, L.F., Cionek, V.M., Sacramento, P.A., & Benedito, E., 2016. Dynamics of Leaf Fall From Riparian Vegetation and the Accumulation in Benthic Stock in Neotropical Streams. Rev. Arvore 40(1), 89-96. http://doi.org/10.1590/0100-67622016000100010.

Giné, M.F., Bergamin, F.H., Zagatto, E.A.G., & Reis, B.F., 1980. Simultaneous determination of nitrate and nitrite by flow injection analysis. Anal. Chim. Acta. 114(15), 191-197. http://doi.org/10.1016/S0003-2670(01)84290-2.

Gonino, G., Benedito, E., Cionek, V.M., Ferreira, M.T., & Oliveira, J.M., 2020. A fish-based index of biotic integrity for neotropical rainforest sandy soil streams - Southern Brazil. Water 12(4), 12-15. http://doi.org/10.3390/w12041215.

Google Drive, 2021 (Online). Retrieved in 2022, December 20, from https://drive.google.com/drive/folders/1Tsy0KpD0FeMaEGBJhWjuj-1RJlK4jzIQ?usp=sharing

Guimarães, A., Lima Rodrigues, A.S., & Malafaia, G., 2017. Adapting a rapid assessment protocol to environmentally assess palm swamp (Veredas) springs in the Cerrado biome, Brazil. Environ. Monit. Assess. 189(11), 592. PMid:29086148. http://doi.org/10.1007/s10661-017-6299-2.

Hanna, D.E.L., Raudsepp-Hearne, C., & Bennett, E.M., 2020. Effects of land use, cover, and protection on stream and riparian ecosystem services and biodiversity. Conserv. Biol. 34(1), 244-255. http://doi.org/10.1111/cobi.13348..

Jankowski, K.J., Mejia, F.H., Blaszcak, J.R., & Holtgrieve, G.W., 2021. Aquatic ecosystem metabolism as a tool in environmental management. Water. 8(4), e1521. http://doi.org/10.1002/wat2.1521.

Karr, J.R., 1987. Biological monitoring and environmental assessment: a conceptual framework. Environ. Manage. 11(2), 249256. http://doi.org/10.1007/BF01867203.

Keller, K., Allsop, Q., Brim Box, J., Buckle, D., Crook, D.A., Douglas, M.M., Jackson, S., Kennard, M.J., Luiz, O.J., Pusey, B.J., Townsend, S.A., & King, A.J., 2019. Dry season habitat use of fishes in an Australian tropical river. Sci. Rep. 9(1), 5677. PMid:30952875. http://doi.org/10.1038/s41598-019-41287-x.

Kieling-Rubio, M., Benvenuti, T., Costa, G., Petry, C., Rodrigues, M., Schmitt, J., & Droste, A., 2015. Integrated Environmental Assessment of streams in the Sinos River basin in the state of Rio Grande do Sul, Brazil. Braz. J. Biol. 75(2, Suppl.), 105-113. PMid:26270222. http://doi.org/10.1590/1519-6984.1013.

Kim, S.K., & Choi, S.U., 2019. Comparison of environmental flows from a habitat suitability perspective: A case study in the Naeseong-cheon stream in Korea. Ecohydrology. 12(6), e2119. http://doi.org/10;1002/eco.2119.

Kindt, R., & Coe, R., 2005. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. Nairobi: World Agroforestry Centre (ICRAF).

Koroleff, K.J.H., 1976. Determination of nutrients. In: Grasshoff, E., Kremling, E., ed. Methods of seawater analysis. New York: Verlag Chemie Weinhein, 188-192.

Lamberti, G.A., Chaloner, D.T., & Hershey, A.E., 2010. Linkages among aquatic ecosystems. J. N. Am. Benthol. Soc. 29(1), 245-263. http://doi.org/10.1899/08-166.1.

Lees, A.C., & Peres, C.A., 2008. Conservation value of remnant riparian forest corridors of varying quality for Amazonian birds and mammals. Conserv. Biol. 22(2), 439-449. PMid:18241239. http://doi.org/10.1111/j.1523-1739.2007.00870.x.

Machado, C.S., Alves, R.I.S., Fregonesi, B.M., Beda, C.F., Suzuki, M.N., Trevilato, R.B., Nadal, M., Domingo, J.L., & Segura-Muñoz, S.I., 2015. Integrating three tools for the environmental assessment of the Pardo River, Brazil. Environ. Monit. Assess. 187(9), 569. PMid:26266898. http://doi.org/10.1007/s10661-015-4788-8.

Mackereth, F.Y.H., Heron, J. & Talling, J.F., 1978. Water analysis: some revised methods for limnologists. London: Scientific Publications Freshwater Biological Association.

Magliozzi, C., Grabowski, R.C., Packman, A.I., & Krause, S., 2018. Toward a conceptual framework of hyporheic exchange across spatial scales. Hydrol. Earth Syst. Sci. 22(12), 6163-6185. http://doi.org/10.5194/hess-22-6163-2018.

Marques, N.C.S., Jankowski, K.J., Macedo, M.N., Juen, L., Luiza-Andrade, A., & Deegan, L.A., 2021. Riparian forests buffer the negative effects of cropland on macroinvertebrate diversity in lowland Amazonian streams. Hydrobiologia 848(15), 3503-3520. http://doi.org/10.1007/s10750-021-04604-y.

Minatti-Ferreira, D.D., & Beaumord, A.C., 2006. Adequação de um protocolo de avaliação rápida de integridade ambiental para ecossistemas de rios e riachos: aspectos físicos. Rev. Salud Ambient. 7(1), 39-47. http://doi.org/10.4136/ambi-agua.996.

Moulton, T.P., Souza, M.L., Silveira, R.M.L., & Krsulović, F.A.M., 2004. Effects of ephemeropterans and shrimps on periphyton and sediments in a coastal stream (Atlantic forest, Rio de Janeiro, Brazil). J. N. Am. Benthol. Soc. 23(4), 868-881. http://doi.org/10.1899/0887-3593(2004)023<0868:EOEASO>2.0.CO;2.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., & Wagner, H., 2019. vegan: Community Ecology Package. R package version 2.5-6. Vienna: R Foundation for Statistical Computing.

Olarewaju, O.E., Adetunji, M.T., Adeofun, C.O., & Adekunle, I.M., 2009. Nitrate and phosphorus loss from agricultural land: implications for nonpoint pollution. Nutr. Cycl. Agroecosyst. 85, 79-95. http://doi.org/10.1007/s10705-009-9249-8.

Ometo, J.P., Martinelli, L.A., Ballester, M.V., Gessner, A., Krusche, A.V., Victoria, R.L., & Williams, M., 2000. Effects of land use on water chemistry and macroinvertebrates in two streams of the Piracicaba river basin, southeast Brazil. Freshwater Biol. 44(2), 327-337. http://doi.org/10.1046/j.1365-2427.2000.00557.x.

Palmer, M.A., Filoso, S., & Fanelli, R.M., 2014. From ecosystems to ecosystem services: stream restoration as ecological engineering. Ecol. Eng. 65, 62-70. http://doi.org/10.1016/j.ecoleng.2013.07.059.

Pazianoto, L.H.R., Solla, A., & Ferreira, V., 2019. Leaf litter decomposition of sweet chestnut is affected more by oomycte infection of trees than by water temperature. Fungal Ecol. 41, 269-278. http://doi.org/10.1016/j.funeco.2019.07.005.

Pereira, L.M., Dunck, B., & Benedito, E., 2021. Human impacts alter the distribution of fish functional diversity in Neotropical stream system. Biotropica 53(2), 536-547. http://doi.org/10.1111/btp.12896.

Piffer, P.R., Tambosi, L.R., Ferraz, S.F.B., Metzger, J.P., & Uriarte, M., 2021. Native forest cover safeguards stream water quality under a changing climate. Ecol. Appl. 31(7), e02414. PMid:34260786. http://doi.org/10.1002/eap.2414.

Piscart, C., Genoel, R., Doledec, S., Chauvet, E., & Marmonier, P., 2009. Effects of intense agricultural practices on heterotrophic processes in streams. Environ. Pollut. 157(3), 1011-1018. PMid:19028003. http://doi.org/10.1016/j.envpol.2008.10.010.

Piscart, C., Navel, S., Maazouzi, C., Montuelle, B., Cornut, J., Mermillod-Blondin, F., Chatelliers, M.C., Simon, L., & Marmonier, P., 2011. Leaf litter recycling in benthic and hyporheic layers in agricultural streams with different types of land use. Sci. Total Environ. 409(20), 4373-4380. PMid:21794895. http://doi.org/10.1016/j.scitotenv.2011.06.060.

Pocewicz, A., & Garcia, E., 2016. Deforestation facilitates widespread stream habitat and flow alteration in the Brazilian Amazon. Biol. Conserv. 203, 252-259. http://doi.org/10.1016/j.biocon.2016.09.032.

R Core Team, 2020. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Raitif, J., Plantegenest, M., & Roussel, J.M., 2019. From stream to land: ecosystem services provided by stream insects to agriculture. Agric. Ecosyst. Environ. 270-271, 32-40. http://doi.org/10.1016/j.agee.2018.10.013.

Reis Oliveira, P.C., Kraak, M.H.S., van der Geest, H.G., Naranjo, S., & Verdonschot, P.F.M., 2018. Sediment composition mediated land use effects on lowland streams ecosystems. Sci. Total Environ. 631-632, 459-468. PMid:29529434. http://doi.org/10.1016/j.scitotenv.2018.03.010.

Taniwaki, R.H., Cassiano, C.C., Fransozi, A.A., Vásquez, K.V., Posada, R.G., Velásquez, G.V., & Ferraz, S.F.B., 2019. Effects of land-use changes on structural characteristics of tropical high-altitude Andean headwater streams. Limnologica 74, 1-7. http://doi.org/10.1016/j.limno.2018.10.002.

Tromboni, F., & Doods, W.K., 2017. Relationships between land use and stream nutrient concentrations in a highly urbanized tropical region of Brazil: Thresholds and Riparian Zones. Environ. Manage. 60(1), 30-40. http://doi.org/10.1007/s00267-017-0858-8.

UN Environment Programme – UNEP, 2021. United Nations decade on ecosystem restoration 2021-2030 (Online). Retrieved in 2021, August 21, from https://www.decadeonrestoration.org/

Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., & Cushing, C.E., 1980. The river continuum concept. Can. J. Fish. Aquat. Sci. 37(1), 130-137. http://doi.org/10.1139/f80-017.

Vyas, V., Kumar, A., Parashar, V., & Tomar, S., 2013. Physical Habitat Assessment of River Denwa Using GIS Techniques. Photonirvachak 41(1), 127-139. http://doi.org/10.1007/s12524-011-0191-2.

Ward, T.A., Tate, K.W., Atwill, E.R., Lile, D.F., Lancaster, D.L., McDougald, N., Brry, S., Ingram, R.S., George, H.A., Jensen, W., Frost, W.E., Phillips, R., Markegard, G.G., & Larson, S., 2003. A comparison of three visual assessments for riparian and stream health. J. Soil Water Conserv. 58(2), 83-88.

Wilson, H.L., Johnson, M.F., Wood, P.J., Thorne, C.R., & Eichhorn, M.P., 2021. Anthropogenic litter is a novel habitat for aquatic macroinvertebrates in urban rivers. Freshwater Biol. 66(3), 524-534. http://doi.org/10.1111/fwb.13657.

Winger, P.V., Lasier, P.J., & Bogenrieder, K.J., 2005. Combined use of rapid bioassessment protocols and sediment quality triad to assess stream quality. Environ. Monit. Assess. 100(1-3), 267-295. PMid:15727312. http://doi.org/10.1007/s10661-005-7788-2.

Wulf, P., & Pearson, R.G., 2017. Mossy stones gather more bugs: moss as habitat, nurseries and refugia for tropical stream invertebrates. Hydrobiologia 790(1), 167-182. http://doi.org/10.1007/s10750-016-3028-8.

Yadav, S., Babel, M.S., Shrestha, S., & Deb, P., 2019. Land use impact on the water quality of large tropical river: Mun River Basin, Thailand. Environ. Monit. Assess. 191(10), 614. PMid:31489514. http://doi.org/10.1007/s10661-019-7779-3.

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., & Smith, G.M., 2009. Mixed effects models and extensions in ecology with R. New York: Springer. http://doi.org/10.1007/978-0-387-87458-6.
 


Submitted date:
12/20/2022

Accepted date:
05/07/2024

Publication date:
07/08/2024

668bef67a9539562ef123b63 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections