Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X7022
Acta Limnologica Brasiliensia
Original Article

Occurrence and ecological risk assessment of pharmaceutically active compounds in neotropical small basins, Brazil

Ocorrência e avaliação de risco ecológicos de compostos farmaceuticamente ativos em pequenas bacias neotropicais, Brasil

Alessandro Minillo; William Deodato Isique; Claudia Andrea Lima Cardoso; Yzel Rondon Súarez

Downloads: 0
Views: 1035

Abstract

Abstract: Aim: The aim of our study was to evaluate the contamination levels of selected pharmaceutically active compounds (PAC) and their potential ecological threat to forested streams.

Methods: Samples of stream water were collected in the second largest city in Mato Grosso do Sul State in center-west of Brazil. Physicochemical parameters and concentrations of PAC were quantified in samples collected in six field campaigns. Ecological risk assessment (ERA) based on risk quotient (RQ) was performed based on the maximum measured concentration of PAC in water.

Results: Six pharmaceutical compounds were successfully quantified in the forested streams, namely caffeine, naproxen, diclofenac, estriol, estradiol and ethinylestradiol. From the point of view of ecological risk, ethinylestradiol (22,57), estradiol (1,46), diclofenac (16.99) and caffeine (5.30) can be considered as priorities PAC, as they present moderate to high risks to aquatic organisms and may also cause damage to the food chain.

Conclusions: This study provides valuable information to emphasize the importance of continuous monitoring of forested streams in the west central region of the country, as well as efforts to control the input of these micropollutants into watercourses.

Keywords

pharmaceuticals, estrogens, risk assessment, environmental contaminants

Resumo

Resumo: Objetivo: O objetivo do nosso estudo foi avaliar os níveis de contaminação de compostos farmaceuticamente ativos selecionados e sua potencial ameaça ecológica em riachos florestais.


Métodos: Amostras de água de córregos foram coletadas na segunda maior cidade do estado de Mato Grosso do Sul no centro-oeste do Brasil. Parâmetros físico-químicos e concentrações de CFA foram quantificados em amostras coletadas de seis campanhas de campo. A avaliação de risco ecológico (ARE) por meio do quociente de risco (QR) foi realizada com base na concentração máxima medida de CFA na água.

Resultados: Seis compostos farmacêuticos foram quantificados com sucesso nos riachos florestais, a saber, cafeína, naproxeno, diclofenaco, estriol, estradiol e etinilestradiol. Do ponto de vista do risco ecológico, o etinilestradiol (22.57), o estradiol (1.46), o diclofenaco (16,99) e a cafeína (5,30) podem ser considerados como CFA prioritários, pois apresentaram riscos moderados a altos para os organismos aquáticos e podem levar a danos ao longo da cadeia alimentar.

Conclusões: Este estudo fornece informações valiosas para reforçar a importância do monitoramento contínuo dos córregos florestados na região centro-oeste do país, bem como os esforços para controlar a entrada desses micropoluentes nos cursos d'água.
 

Palavras-chave

fármacos, estrógenos, análise de risco, contaminantes ambientais

References

Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y., 2017. Environmental impact of estrogens on human, animal and plant life: a critical review. Environ. Int. 99, 107-119. PMid:28040262. http://dx.doi.org/10.1016/j.envint.2016.12.010.

Allan, J.D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35(1), 257-284. http://dx.doi.org/10.1146/annurev.ecolsys.35.120202.110122.

Aragão, R.B.A., Semensatto, D., Calixto, L.A., & Labuto, G., 2020. Pharmaceutical market, environmental public policies and water quality: the case of the São Paulo Metropolitan Region, Brazil. Cad. Saude Publica 36(11), e00192319. PMid:33237204. http://dx.doi.org/10.1590/0102-311x00192319.

Arnold, K.E., Brown, A.R., Ankley, G.T., & Sumpter, J.P., 2014. Medicating the environment: assessing risk of pharmaceuticals to wildlife and ecosystems. Philos Trans R Soc Lond B Biol Sci. 369(1656), 20130569. PMid:25405959. http://dx.doi.org/10.1098/rstb.2013.0569.

Ashfaq, M., Li, Y., Rehman, M.S.U., Zubair, M., Mustafa, M.Z.G., Nazar, M.F., Yu, C.P., & Sun, Q., 2019. Occurrence, spatial variation and risk assessment of pharmaceuticals and personal care products in urban wastewater, canal surface water, and their sediments: a case study of Lahore, Pakistan. Sci. Total Environ. 688, 653-663. PMid:31254831. http://dx.doi.org/10.1016/j.scitotenv.2019.06.285.

Baldigo, B.P., George, S.D., Phillips, P.J., Hemming, J.D.C., Denslow, N.D., & Kroll, K.J., 2015. Potential estrogenic effects of wastewaters on gene expression in Pimephales promelas and fish assemblages in streams of southeastern New York. Environ. Toxicol. Chem. 34(12), 2803-2815. PMid:26423596. http://dx.doi.org/10.1002/etc.3120.

Bellón, B., Blanco, J., De Vos, A., Roque, F.O., Pays, O., & Renaud, P.C., 2020. Integrated landscape change analysis of protected areas and their surrounding landscapes: application in the Brazilian Cerrado. Remote Sens. 12(1413), 2-36. http://dx.doi.org/10.3390/rs12091413.

Bonnefille, B., Gomez, E., Courant, F., Escande, A., & Fenet, H., 2018. Diclofenac in the marine environment: a review of its occurrence and effects. Mar. Pollut. Bull. 131(Pt A), 496-506. PMid:29886975. http://dx.doi.org/10.1016/j.marpolbul.2018.04.053.

Brasil. Agência Nacional de Vigilância Sanitária – ANVISA, 2003. Resolução n° 899 de 29/05/2003. Guia para validação de métodos analíticos e bioanalíticos. Diário Oficial da União, Brasília, DF.

Brasil. National Environment Council – CONAMA, 2005. Resolution No. 357 of March 17, 2005. Classification of waters, sweets, braids and salinas of the national territory. Diário Oficial da União, Brasília, DF. Retrieved in 2022, October 21, from http://www.braziliannr.com/brazilian-environmental-legislation/conama-resolution-35705/.

Brooks, B.W., Riley, T.M., & Taylor, R.D., 2006. Water quality of effluent-dominated ecosystems: ecotoxicological, hydrological, and management considerations. Hydrobiologia 556(1), 365-379. http://dx.doi.org/10.1007/s10750-004-0189-7.

Brozinski, J.M., Lahti, M., Meierjohann, A., Oikari, A., & Kronberg, L., 2013. The anti-inflammatory drugs diclofenac, naproxen and ibuprofen are found in the bile of wild fish caught downstream of a wastewater treatment plant. Environ. Sci. Technol. 47(1), 342-348. PMid:23186122. http://dx.doi.org/10.1021/es303013j.

Bunke, D., Moritz, S., Brack, W., Herráez, D.L., Posthuma, L., & Nuss, M., 2019. Developments in society and implications to emerging pollutants in the aquatic environment. Environ. Sci. Eur. 31(32), 1-17. http://dx.doi.org/10.1186/s12302-019-0213-1.

Caldwell, D.J., Mastrocco, F., Anderson, P.D., Lange, R., & Sumpter, J.P., 2012. Predicted-no-effect concentrations for the steroid estrogens estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol. Environ. Toxicol. Chem. 31(6), 1396-1406. PMid:22488680. http://dx.doi.org/10.1002/etc.1825.

Derakhsh, M.P., Moradi, M.A., Sharifpour, I., & Jamili, S., 2020. Toxic effects of diclofenac on gills, liver and kidney of Cyprinus carpio (Linnaeus, 1758). Iran. J. Fish. Sci. 19(2), 735-747. http://dx.doi.org/10.22092/ijfs.2018.119517.

Ebele, A.J., Oluseyi, T., Drage, D.S., Harrad, S., & Abdallah, M.A.E., 2020. Occurrence, seasonal variation and human exposure to pharmaceuticals and personal care products in surface water, groundwater and drinking water in Lagos State, Nigeria. Emerg. Contam. 6, 124-132. http://dx.doi.org/10.1016/j.emcon.2020.02.004.

European Commission, 2003. Technical guidance document on risk assessment - Part II: EUR20418 EN/2. Luxembourg: European Commission Joint Research Centre.

European Medicines Agency – EMA, 2006. Committee for medicinal products for human use: guideline on the environmental risk assessment of medicinal products for human use [online]. London, Retrieved in 2022, October 21, from https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-environmental-risk-assessment-medicinal-products-human-use-first-version_en.pdf.

Fent, K., Weston, A.A., & Caminada, D., 2006. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 76(2), 122-159. PMid:16257063. http://dx.doi.org/10.1016/j.aquatox.2005.09.009.

Ferreira, F.S., Solórzano, J.C.J., & Suarez, Y.R., 2021. Influence of urbanization on stream fish assemblages in three microbasins in the Upper Paraná River Basin. Braz. J. Biol. 83, e247384. PMid:34190764. http://dx.doi.org/10.1590/1519-6984.247384.

Fongaro, G., Stoco, P.H., Souza, D.S.M., Grisard, E.C., Magri, M.E., Rogovski, P., Schörner, M.A., Barazzetti, F.H., Christoff, A.P., Oliveira, L.F.V., Bazzo, M.L., Wagner, G., Hernández, M., & Rodríguez-Lázaro, D., 2021. The presence of SARS-CoV-2 RNA in human sewage in Santa Catarina, Brazil. Sci. Total Environ. 778, 146198. PMid:33714813. http://dx.doi.org/10.1016/j.scitotenv.2021.146198.

Freitas, L.A.A., & Radis-Baptista, G., 2021. Pharmaceutical pollution and disposal of expired, unused, and unwanted medicines in the Brazilian context. J. Xenobiot. 11(2), 61-76. PMid:34069823. http://dx.doi.org/10.3390/jox11020005.

Garrido, E., Camacho-Muñoz, D., Martín, J., Santos, A., Santos, J.L., Aparicio, I., & Alonso, E., 2016. Monitoring of emerging pollutants in Guadiamar River basin (South of Spain): analytical method, spatial distribution and environmental risk assessment. Environ. Sci. Pollutt. Res. Int., 23(24), 25127-25144. PMid:27679999. http://dx.doi.org/10.1007/s11356-016-7759-x.

Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., & Fava, F., 2015. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. N. Biotechnol. 32(1), 147-156. PMid:24462777. http://dx.doi.org/10.1016/j.nbt.2014.01.001.

Godoi, F.G.A., Muñoz-Peñuela, M., Gomes, A.D.O., Tolussi, C.E., Brambila-Souza, G., Branco, G.S., Lo Nostro, F.L., & Moreira, R.G., 2020. Endocrine disruptive action of diclofenac and caffeine on Astyanax altiparanae males (Teleostei: Characiformes: Characidae). Comp. Biochem. Physiol. C Toxicol. Pharmacol. 231, 108720. PMid:32004750. http://dx.doi.org/10.1016/j.cbpc.2020.108720.

Guyón, N.F., Roggio, M.A., Amé, M.V., Hued, A.C., Valdés, M.E., Giojalas, L.C., Wunderlin, D.A., & Bistoni, M.A., 2012. Impairments in aromatase expression, reproductive behavior, and sperm quality of male fish exposed to 17β-estradiol. Environ. Toxicol. Chem. 31(5), 935-940. PMid:22388924. http://dx.doi.org/10.1002/etc.1790.

Halling-Sørensen, B., Nielsen, S.N., Lanzky, P.F., Ingerslev, F., Lützhøft, H.C.H., & Jørgensen, S.E., 1998. Occurrence, fate and effects of pharmaceutical substances in the environment: a review. Chemosphere 36(2), 357-393. PMid:9569937. http://dx.doi.org/10.1016/S0045-6535(97)00354-8.

Hamid, A., Bhat, S.U., & Jehangir, A., 2020. Local determinants influencing stream water quality. Appl. Water Sci. 10(1), 24. http://dx.doi.org/10.1007/s13201-019-1043-4.

Hanna, N., Sun, P., Sun, Q., Li, X., Yang, X., Ji, X., Zou, H., Ottoson, J., Nilsson, L.E., Berglund, B., Dyar, O.J., Tamhankar, A., & Stålsby Lundborg, C., 2018. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environ. Int. 114, 131-142. PMid:29501851. http://dx.doi.org/10.1016/j.envint.2018.02.003.

Heath, E., Filipič, M., Kosjek, T., & Isidori, M., 2016. Fate and effects of the residues of anticancer drugs in the environment. Environ. Sci. Pollut. Res. Int. 23(15), 14687-14691. PMid:27349788. http://dx.doi.org/10.1007/s11356-016-7069-3.

Hernando, M.D., Mezcua, M., Fernández-Alba, A.R., & Barceló, D., 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69(2), 334-342. PMid:18970571. http://dx.doi.org/10.1016/j.talanta.2005.09.037.

Ide, A.H., Osawa, R.A., Marcante, L.O., Pereira, J.C., & Azevedo, J.C.R., 2017. Occurrence of pharmaceutical products, female sex hormones and caffeine in a subtropical region in Brazil. Clean Soil Air Water 45(9), 1700334. http://dx.doi.org/10.1002/clen.201700334.

Instituto Brasileiro de Geografia e Estatística – IBGE, 2020. Censo demográfico: Dourados (MS) [online]. Retrieved in 2022, October 21, from https://www.ibge.gov.br/cidades-e-estados/ms/dourados

Instituto de Meio Ambiente de Mato Grosso do Sul – IMASUL, 2021. Relatórios de pesquisas em unidades de conservação – concluídas [online]. Retrieved in 2022, October 21, from https://www.imasul.ms.gov.br/relatorios-de-pesquisas-em-unidades-de-conservacao-concluidas-2/.

Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO, 2010. Orientação sobre validação de métodos analíticos: DOQ-CGCRE-008 [online]. Rio de Janeiro: INMETRO. Retrieved in 2022, October 21, from https://www.ufjf.br/baccan/files/2011/05/Validacao-Inmetro.pdf

Jackson, L., & Klerks, P., 2020. Effects of the synthetic estrogen 17α-Ethinylestradiol on Heterandria formosa populations: does matrotrophy circumvent population collapse? Aquat. Toxicol. 229, 105659. PMid:33130452. http://dx.doi.org/10.1016/j.aquatox.2020.105659.

Khetan, S.K., & Collins, T.J., 2007. Human pharmaceuticals in the aquatic environment: a challenge to Green Chemistry. Chem. Rev. 107(6), 2319-2364. PMid:17530905. http://dx.doi.org/10.1021/cr020441w.

Kidd, K.A., Blanchfield, P.J., Mills, K.H., Palace, V.P., Evans, R.E., Lazorchak, J.M., & Flick, R.W., 2007. Collapse of a fish population after exposure to a synthetic estrogen. Proc. Natl. Acad. Sci. USA 104(21), 8897-8901. PMid:17517636. http://dx.doi.org/10.1073/pnas.0609568104. [PNAS]

Kümmerer, K., Haiß, A., Schuster, A., Hein, A., & Ebert, I., 2016. Antineoplastic compounds in the environment-substances of special concern. Environ. Sci. Pollut. Res. Int. 23(15), 14791-14804. PMid:25475615. http://dx.doi.org/10.1007/s11356-014-3902-8.

Li, Z., Lu, G., Yang, X., & Wang, C., 2012. Single and combined effects of selected pharmaceuticals at sublethal concentrations on multiple biomarkers in Carassius auratus. Ecotoxicology 21(2), 353-361. PMid:21947668. http://dx.doi.org/10.1007/s10646-011-0796-9.

Liu, N., Jin, X., Feng, C., Wang, Z., Wu, F., Johnson, A.C., Xiao, H., Hollert, H., & Giesy, J.P., 2020. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: a proposed multiple-level system. Environ. Int. 136, 105454. PMid:32032889. http://dx.doi.org/10.1016/j.envint.2019.105454.

Lonappan, L., Brar, S.K., Das, R.K., Verma, M., & Surampalli, R.Y., 2016. Diclofenac and its transformation products: environmental occurrence and toxicity: a review. Environ. Int. 96, 127-138. PMid:27649472. http://dx.doi.org/10.1016/j.envint.2016.09.014.

Loos, R., Marinov, D., Sanseverino, I., Napierska, D., & Lettieri, T., 2018. Review of the 1st watch list under the water framework directive and recommendations for the 2nd watch list: EUR 29173 EN. Luxembourg: Publications Office of the European Union.

Marson, E.O., Paniagua, C.E.S., Gomes Júnior, O., Gonçalves, B.R., Silva, V.M., Ricardo, I.A.V.M., Starling, M.C., Amorim, C.C., & Trovó, A.G., 2022. A review toward contaminants of emerging concern in Brazil: Occurrence, impact and their degradation by advanced oxidation process in aquatic matrices. Sci. Total Environ. 836, 155605. PMid:35504382. http://dx.doi.org/10.1016/j.scitotenv.2022.155605.

Martins, M.L., Primel, E.G., Caldas, S.S., Prestes, O.D., Adaime, M.B., & Zanella, R., 2012. Microextração Líquido-Líquido Dispersiva (DLLME): fundamentos e aplicações. Sci. Chromatogr. 4(1), 35-51. http://dx.doi.org/10.4322/sc.2012.004.

Medeiros, G.A., Tresmondi, A.C.C.L., Queiroz, B.P.V., Fengler, F.H., Rosa, A.H., Fialho, J.M., Lopes, R.S., Negro, C.V., Santos, L.F., & Ribeiro, A.I., 2017. Water quality, pollutants loads, and multivariate analysis of the effects of sewage discharges into urban streams of Southeast Brazil. Energy Ecol. Environ. 2(4), 259-276. http://dx.doi.org/10.1007/s40974-017-0062-y.

Mizukawa, A., Filippe, T.C., Peixoto, L.O.M., Scipioni, B., Leonardi, I.R., & Azevedo, J.C.R., 2019. Caffeine as a chemical tracer for contamination of urban rivers. Braz. J. Water Resour. 24(29), 1-10. http://dx.doi.org/10.1590/2318-0331.241920180184.

Mizukawa, A., Reichert, G., Filippe, T.C., Brehm, F.A., & Azevedo, J.C.R., 2018. Occurrence and risk assessment of personal care products in subtropical urban rivers. Environ. Eng. Sci. 35(11), 1-10. http://dx.doi.org/10.1089/ees.2018.0066.

Molnar, E., Maasz, G., & Pirger, Z., 2021. Environmental risk assessment of pharmaceuticals at a seasonal holiday destination in the largest freshwater shallow lake in Central Europe. Environ. Sci. Pollut. Res. Int. 28(42), 59233-59243. PMid:32666449. http://dx.doi.org/10.1007/s11356-020-09747-4.

Montagner, C.C., & Jardim, W.F., 2011. Spatial and seasonal variations of pharmaceuticals and endocrine disruptors in the Atibaia River, São Paulo State (Brazil). J. Braz. Chem. Soc. 22(8), 1452-1462. http://dx.doi.org/10.1590/S0103-50532011000800008.

Montagner, C.C., Sodré, F.F., Acayaba, R.D., Vidal, C., Campestrini, I., Locatelli, M.A., Pescara, I.C., Albuquerque, A.F., Umbuzeiro, G.A., & Jardim, W.F., 2019. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc. 30, 614-632. https://doi.org/10.21577/0103-5053.20180232.

Montagner, C.C., Umbuzeiro, G.A., Pasquini, C., & Jardim, W.F., 2014. Caffeine as an indicator of estrogenic activity in source water. Environ. Sci. Process. Impacts 16(8), 1866-1869. PMid:24939322. http://dx.doi.org/10.1039/C4EM00058G.

Nasri, A., Mezni, A., Lafon, P.A., Wahbi, A., Cubedo, N., Clair, P., Harrath, A.H., Beyrem, H., Rossel, M., & Perrier, V., 2021. Ethinylestradiol (EE2) residues from birth control pills impair nervous system development and swimming behavior of zebrafish larvae. Sci. Total Environ. 770, 145272. PMid:33497902. http://dx.doi.org/10.1016/j.scitotenv.2021.145272.

Nebot, C., Gibb, S.W., & Boyd, K.G., 2007. Quantification of human pharmaceuticals in water samples by high performance liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 598(1), 87-94. PMid:17693311. http://dx.doi.org/10.1016/j.aca.2007.07.029.

Ojeda, C.B., & Rojas, F.S., 2011. Separation and preconcentration by dispersive liquid-liquid microextraction procedure: recent applications. Chromatographia 74(9-10), 651-679. http://dx.doi.org/10.1007/s10337-011-2124-1.

Oliveira, M.D., & Ferreira, C.J., 2003. Estudos limnológicos para o monitoramento da bacia hidrográfica do Miranda, Pantanal Sul [online]. Corumbá: Embrapa Pantanal. Boletim de Pesquisa e Desenvolvimento, vol. 54. Retrieved in 2022, October 21, from https://ainfo.cnptia.embrapa.br/digital/bitstream/item/37396/1/BP54.pdf

Owens, B., 2015. Pharmaceuticals in the environment: a growing problem. Pharmaceutical J [online] 294, 7850. Retrieved in 2022, June 16, from https://pharmaceutical-journal.com/article/feature/pharmaceuticals-in-the-environment-a-growing-problem.

Pal, A., Gin, K.Y.H., Lin, A.Y.C., & Reinhard, M., 2010. Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci. Total Environ. 408(24), 6062-6069. PMid:20934204. http://dx.doi.org/10.1016/j.scitotenv.2010.09.026.

Palma, P., Köck-Schulmeyer, M., Alvarenga, P., Ledo, L., Barbosa, I.R., López de Alda, M., & Barceló, D., 2014. Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Sci. Total Environ. 488-489, 208-219. PMid:24836129. http://dx.doi.org/10.1016/j.scitotenv.2014.04.088.

Patel, N., Khan, M.D.Z.A., Shahane, S., Rai, D., Chauhan, D., Kant, C., & Chaudhary, V.K., 2020. Emerging pollutants in aquatic environment: source, effect, and challenges in biomonitoring and bioremediation: a review. Pollution 6(1), 99-113.

Pereira, A.M.P.T., Silva, L.J.G., Laranjeiro, A.C.S.M., Meisel, L.M., Lino, C.M., & Pena, A., 2017. Human pharmaceuticals in Portuguese rivers: the impact of water scarcity in the environmental risk. Sci. Total Environ. 609, 1182-1191. PMid:28787792. http://dx.doi.org/10.1016/j.scitotenv.2017.07.200.

Peteffi, G.P., Fleck, J.D., Kael, I.M., Rosa, D.C., Antunes, M.V., & Linden, R., 2019. Ecotoxicological risk assessment due to the presence of bisphenol A and caffeine in surface waters in the Sinos River Basin - Rio Grande do Sul – Brazil. Braz. J. Biol. 79(4), 712-721. PMid:30427383. http://dx.doi.org/10.1590/1519-6984.189752.

Petrie, B., Barden, R., & Kasprzyk-Hordern, B., 2015. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72, 3-27. PMid:25267363. http://dx.doi.org/10.1016/j.watres.2014.08.053.

Prado, T., Fumian, T.M., Mannarino, C.F., Maranhão, A.G., Siqueira, M.M., & Miagostovich, M.P., 2020. Preliminary results of SARS-CoV-2 detection in sewerage system in Niterói municipality, Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 115, e200196. PMid:32725059. http://dx.doi.org/10.1590/0074-02760200196.

R Core Team, 2021. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Rajeshkumar, S., & Li, X., 2018. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep. 5, 288-295. PMid:29511642. http://dx.doi.org/10.1016/j.toxrep.2018.01.007.

Rezaee, M., Assadi, Y., Hossein, M.M., Hosseini, M.R.M., Aghaee, E., Ahmadi, F., & Berijani, S., 2006. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 1116(1-2), 1-9. PMid:16574135. http://dx.doi.org/10.1016/j.chroma.2006.03.007.

Ribeiro, F.A.L., Ferreira, M.M.C., Morano, S.C., Silva, L.R., & Schneider, R.P., 2008. Planilha de validação: uma nova ferramenta para estimar figuras de mérito na validação de métodos analíticos univariados. Quim. Nova 31(1), 164-171. http://dx.doi.org/10.1590/S0100-40422008000100029.

Richardson, S.D., & Kimura, S.Y., 2020. Water analysis: emerging contaminants and current issues. Anal. Chem. 92(1), 473-505. PMid:31825597. http://dx.doi.org/10.1021/acs.analchem.9b05269.

Rocha, M.P., Dourado, P.L.R., Cardoso, C.A.L., Cândido, L.S., Pereira, J.G., de Oliveira, K.M.P., & Grisolia, A.B., 2018. Tools for monitoring aquatic environments to identify anthropic effects. Environ. Monit. Assess. 190(2), 61. PMid:29305724. http://dx.doi.org/10.1007/s10661-017-6440-2.

Santana, C.A., Andrade, L.H.C., Súarez, Y.R., Yukimitu, K., Moraes, J.C.S., & Lima, S.M., 2015. Fourier transform-infrared photoacoustic spectroscopy applied in fish scales to access environmental integrity: a case study of Astyanax altiparanae species. Infrared Phys. Technol. 72, 84-89. http://dx.doi.org/10.1016/j.infrared.2015.07.005.

Santos, J.A., Quadra, G.R., Almeida, R.M., Soranço, L., Lobo, H., Rocha, V.N., Bialetzki, A., Reis, J.L., Roland, F., & Barros, N., 2022. Sublethal effects of environmental concentrations of caffeine on a neotropical freshwater fish. Ecotoxicology 31(1), 161-167. PMid:34773559. http://dx.doi.org/10.1007/s10646-021-02498-z.

Santos-Silva, T.G., Montagner, C.C., & Martinez, C.B.R., 2018. Evaluation of caffeine effects on biochemical and genotoxic biomarkers in the neotropical freshwater teleost Prochilodus lineatus. Environ. Toxicol. Pharmacol. 58, 237-242. PMid:29438913. http://dx.doi.org/10.1016/j.etap.2018.02.002.

Sousa, D.N.R., Mozeto, A.A., Carneiro, R.L., & Fadini, P.S., 2014. Electrical conductivity and emerging contaminant as markers of surface freshwater contamination by wastewater. Sci. Total Environ. 484, 19-26. PMid:24686141. http://dx.doi.org/10.1016/j.scitotenv.2014.02.135.

Sposito, J.C.V., Francisco, L.F.V., do Amaral Crispim, B., da Silva Dantas, F.G., de Souza, J.P., Viana, L.F., Solórzano, J.C.J., Oliveira, K.M.P., & Barufatti, A., 2019. Influence of land use and cover on toxicogenetic potential of surface water from central-west Brazilian rivers. Arch. Environ. Contam. Toxicol. 76(3), 483-495. PMid:30770948. http://dx.doi.org/10.1007/s00244-019-00603-2.

Sposito, J.C.V., Montagner, C.C., Casado, M., Navarro-Martín, L., Jut Solórzano, J.C., Piña, B., & Grisolia, A.B., 2018. Emerging contaminants in Brazilian rivers: occurrence and effects on gene expression in zebrafish (Danio rerio) embryos. Chemosphere 209, 696-704. PMid:29960196. http://dx.doi.org/10.1016/j.chemosphere.2018.06.046.

Stefanakis, A.I., & Becker, J.A., 2016. A review of emerging contaminants in water: classification, sources, and potential risks. In: McKeown, A. E. & Bugyi, G., eds. Impact of water pollution on human health and environmental sustainability. Hershey: IGI Global, 55-80. http://dx.doi.org/10.4018/978-1-4666-9559-7.ch003.

Sumpter, J.P., & Jobling, S., 2013. The occurrence, causes, and consequences of estrogens in the aquatic environment. Environ. Toxicol. Chem. 32(2), 249-251. PMid:23325527. http://dx.doi.org/10.1002/etc.2084.

Sundar, S., Heino, J., Roque, F.O., Simaika, J.P., Melo, A.S., Tonkin, J.D., Nogueira, D.G., & Silva, D.P., 2020. Conservation of freshwater macroinvertebrate biodiversity in tropical regions. Aquat. Conserv. 30(6), 1-13. http://dx.doi.org/10.1002/aqc.3326.

Swiss Centre for Applied Ecotoxicology – ECOTOX CENTRE, 2021. Proposals for acute and chronic quality standards [online]. Retrieved in 2022, October 21, from https://www.ecotoxcentre.ch/expert-service/quality-criteria/quality-criteria-for-surface-waters

Verbinnen, R.T., Nunes, G.S., & Vieira, E.M., 2010. Determination of estrogens in drinking water using HPLC-DAD. Quim. Nova 33, 1837-1842. http://dx.doi.org/10.1590/S0100-40422010000900003.

Viana, L.F., Tondato, K.K., Súarez, Y.R., & Lima-Junior, E.S., 2014. Influence of environmental integrity on the reproductive biology of Astyanax altiparanae Garutti & Britski, 2000 in the Ivinhema river Basin. Acta Sci. Biol. Sci. 36(2), 165-173. http://dx.doi.org/10.4025/actascibiolsci.v36i2.21052.

Vieira, L.R., Soares, A.M.V.M., & Freitas, R., 2022. Caffeine as a contaminant of concern: a review on concentrations and impacts in marine coastal systems. Chemosphere 286(Pt. 2), 131675. PMid:34358890. http://dx.doi.org/10.1016/j.chemosphere.2021.131675.

Wedekind, C., 2014. Fish populations surviving estrogen pollution. BMC Biol. 12(1), 10. PMid:24512617. http://dx.doi.org/10.1186/1741-7007-12-10.

Wee, S.Y., Aris, A.Z., Yusoff, F.M.D., & Praveena, S.M., 2019. Occurrence and risk assessment of multiclass endocrine disrupting compounds in an urban tropical river and a proposed risk management and monitoring framework. Sci. Total Environ. 671, 431-442. PMid:30933799. http://dx.doi.org/10.1016/j.scitotenv.2019.03.243.

Wilkinson, J.L., Boxall, A.B.A., Kolpin, D.W., Leung, K.M.Y., Lai, R.W.S., Galbán-Malagón, C., Adell, A.D., Mondon, J., Metian, M., Marchant, R.A., Bouzas-Monroy, A., Cuni-Sanchez, A., Coors, A., Carriquiriborde, P., Rojo, M., Gordon, C., Cara, M., Moermond, M., Luarte, T., Petrosyan, V., Perikhanyan, Y., Mahon, C.S., McGurk, C.J., Hofmann, T., Kormoker, T., Iniguez, V., Guzman-Otazo, J., Tavares, J.L., Gildasio De Figueiredo, F., Razzolini, M.T.P., Dougnon, V., Gbaguidi, G., Traoré, O., Blais, J.M., Kimpe, L.E., Wong, M., Wong, D., Ntchantcho, R., Pizarro, J., Ying, G.-G., Chen, C.-E., Páez, M., Martínez-Lara, J., Otamonga, J.-P., Poté, J., Ifo, S.A., Wilson, P., Echeverría-Sáenz, S., Udikovic-Kolic, N., Milakovic, M., Fatta-Kassinos, D., Ioannou-Ttofa, L., Belušová, V., Vymazal, J., Cárdenas-Bustamante, M., Kassa, B.A., Garric, J., Chaumot, A., Gibba, P., Kunchulia, I., Seidensticker, S., Lyberatos, G., Halldórsson, H.P., Melling, M., Shashidhar, T., Lamba, M., Nastiti, A., Supriatin, A., Pourang, N., Abedini, A., Abdullah, O., Gharbia, S.S., Pilla, F., Chefetz, B., Topaz, T., Yao, K.M., Aubakirova, B., Beisenova, R., Olaka, L., Mulu, J.K., Chatanga, P., Ntuli, V., Blama, N.T., Sherif, S., Aris, A.Z., Looi, L.J., Niang, M., Traore, S.T., Oldenkamp, R., Ogunbanwo, O., Ashfaq, M., Iqbal, M., Abdeen, Z., O’Dea, A., Morales-Saldaña, J.M., Custodio, M., de la Cruz, H., Navarrete, I., Carvalho, F., Gogra, A.B., Koroma, B.M., Cerkvenik-Flajs, V., Gombač, M., Thwala, M., Choi, K., Kang, H., Ladu, J.L.C., Rico, A., Amerasinghe, P., Sobek, A., Horlitz, G., Zenker, A.K., King, A.C., Jiang, J.-J., Kariuki, R., Tumbo, M., Tezel, U., Onay, T.T., Lejju, J.B., Vystavna, Y., Vergeles, Y., Heinzen, H., Pérez-Parada, A., Sims, D.B., Figy, M., Good, D., & Teta, C., 2022. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 119(8), e2113947119. http://dx.doi.org/10.1073/pnas.2113947119.

Zhang, P., Zhou, H., Li, K., Zhao, X., Liu, Q., Li, D., & Zhao, G., 2018. Occurrence of pharmaceuticals and personal care products, and their associated environmental risks in a large shallow lake in north China. Environ. Geochem. Health 40(4), 1525-1539. PMid:29332148. http://dx.doi.org/10.1007/s10653-018-0069-0.

Zhou, S.B., Di Paolo, C., Wu, X.D., Shao, Y., Seiler, T.B., & Hollert, H., 2019. Optimization of screening-level risk assessment and priority selection of emerging pollutants: the case of pharmaceuticals in European surface waters. Environ. Int. 128, 1-10. PMid:31029973. http://dx.doi.org/10.1016/j.envint.2019.04.034.
 


Submitted date:
10/21/2022

Accepted date:
04/06/2023

Publication date:
05/23/2023

646ccd66a953952c8d2f38b6 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections