Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X3423
Acta Limnologica Brasiliensia
Review Article

Reviewing the organic matter processing by wetlands

Revendo o processamento da matéria orgânica pelas áreas úmidas

Marcela Bianchessi da Cunha-Santino; Irineu Bianchini Júnior

Downloads: 0
Views: 767

Abstract

Aim: Cycling processes in wetlands are highly dynamic and involve complex interactions between hydrological processes, biogeochemical transformations, and microbial communities. This review attempts to assess the interactions between elements within biogeochemical cycles and the possible routes in which organic matter is processed in waterlogged soils.

Methods: The input and cycling of organic matter in flooded soils were approached in this review. We used a non-systematic literature survey to indicate the possible biogeochemical routes of organic matter processing in waterlogged soils.

Results: We explore hydrological processes, oxygen availability, biogeochemical routes of the organic matter process, and the inputs and exports of organic matter in flooded soils from wetlands.

Conclusions: The anaerobic degradation of organic resources predominantly occurs within submerged soils. Under conditions of maintenance of natural rates of primary production and allochthonous detritus input, storing organic detritus in flooded soils prevails over mineralization. The importance of hydrology for the export of organic carbon is evident. In wetlands, the export of organic matter is predominantly associated with dissolved organic matter and methane production.

Keywords

waterlogged soils, hydrological regime, biogeochemical reactions, carbon and nutrient cycling, anaerobiosis, decomposition

Resumo

Objetivo: Os processos de ciclagem em áreas úmidas são altamente dinâmicos e envolvem interações complexas entre processos hidrológicos, transformações biogeoquímicas e comunidades microbianas. Esta revisão avaliou as interações entre os elementos no contexto dos ciclos biogeoquímicos e as possíveis rotas em que a matéria orgânica é processada em solos alagados.

Métodos: Nessa revisão foram abordados os processos de entrada e ciclagem de matéria orgânica em solos inundados. Utilizamos um levantamento bibliográfico não sistemático para indicar as possíveis rotas biogeoquímicas de processamento da matéria orgânica em solos alagados.

Resultados: Exploramos processos hidrológicos, disponibilidade de oxigênio, rotas biogeoquímicas do processo de matéria orgânica e as entradas e exportações de matéria orgânica em solos alagados de áreas úmidas.

Conclusões: A degradação anaeróbica dos recursos orgânicos ocorre predominantemente em solos submersos. Em condições de manutenção das taxas naturais de produção primária e adução de detritos alóctones, o armazenamento de detritos orgânicos em solos alagados prevalece sobre a mineralização. A importância da hidrologia para a exportação de carbono orgânico é evidente. Nas áreas úmidas, a exportação de matéria orgânica está predominantemente associada à matéria orgânica dissolvida e a produção de metano.
 

Palavras-chave

solos alagados, regime hidrológico, reações biogeoquímicas, ciclagem de carbono e nutrientes, anaerobiose, decomposição

References

Armstrong, W., & Boatman, D.J., 1967. Some field observations relating the growth of bog plants to conditions of soil aeration. J. Ecol. 55(1), 101-110. http://dx.doi.org/10.2307/2257719.

Assunção, A.W.A., Souza, B.P., Silva, W.T.L., Cunha-Santino, M.B., & Bianchini Júnior, I., 2017. Molecular changes of aquatic humic substances formed from four aquatic macrophyte under different oxygen conditions. Chem. Ecol. 33(10), 918-931. http://dx.doi.org/10.1080/02757540.2017.1393532.

Baker, C., Thompson, J.R., & Simpson, M., 2009. Hydrological dynamics I: surface waters, flood and sediment dynamics. In: Barker, T., & Maltby, E., eds. The wetlands handbook. Chichester: Wiley-Blackwell, 120-168. http://dx.doi.org/10.1002/9781444315813.ch6.

Banik, S., Sen, M., & Sen, S.P., 1996. Effects of inorganic fertilizers and micronutrients on methane production from wetland rice (Oryza sativa L.). Biol. Fertil. Soils 21(4), 319-322. http://dx.doi.org/10.1007/BF00334910.

Barker, T., & Maltby, E., 2009. Introduction - The dynamics of wetlands. In: Barker, T., & Maltby, E., eds. The wetlands handbook. Chichester: Wiley-Blackwell, 113-119. http://dx.doi.org/10.1002/9781444315813.ch5.

Basiliko, N., & Yavitt, J.B., 2001. Influence of Ni, Co, Fe, and Na additions on methane production in Sphagnum-dominated northern American peatlands. Biogeochemistry 52(2), 133-153. http://dx.doi.org/10.1023/A:1006461803585.

Bergman, I., Lundberg, P., & Nilsson, M., 1999. Microbial carbon mineralization in an acid surface peat: effects of environmental factors in laboratory incubations. Soil Biol. Biochem. 31(13), 1867-1877. http://dx.doi.org/10.1016/S0038-0717(99)00117-0.

Bernal, B., & Mitsch, W.J., 2012. Comparing carbon sequestration in temperate freshwater wetland communities. Glob. Change Biol. 18(5), 1636-1647. http://dx.doi.org/10.1111/j.1365-2486.2011.02619.x.

Bianchini Júnior, I., & Cunha-Santino, M.B., 2011. Model parameterization for aerobic decomposition of plant resources drowned during man-made lakes formation. Ecol. Modell. 222(7), 1263-1271. http://dx.doi.org/10.1016/j.ecolmodel.2011.01.019.

Bianchini Júnior, I., & Cunha-Santino, M.B., 2016. CH4 and CO2 from decomposition of Salvinia auriculata Aublet, a macrophyte with high invasive potential. Wetlands 36(3), 557-564. http://dx.doi.org/10.1007/s13157-016-0765-4.

Bianchini Júnior, I., Cunha-Santino, M.B., Romeiro, F., & Bitar, A.L., 2010. Emissions of methane and carbon dioxide during anaerobic decomposition of aquatic macrophytes from a tropical lagoon (São Paulo, Brazil). Acta Limnol. Bras. 22(2), 157-164. http://dx.doi.org/10.1590/S2179-975X2010000200005.

Bleam, W., 2017. Soil and environmental chemistry. Amsterdam: Academic Press, 573 p.

Bloom, A.A., Palmer, P.I., Fraser, A., & Reay, D.S., 2012. Seasonal variability of tropical wetland CH4 emissions: the role of the methanogen-available carbon pool. Biogeosciences 9(8), 2821-2830. http://dx.doi.org/10.5194/bg-9-2821-2012.

Boon, P.I. 2006. Biogeochemistry and bacterial ecology of hydrologically dynamic wetlands. In: Batzer, D.P., & Sharitz, R.R., eds. Ecology of freshwater and estuarine wetlands. Berkeley: University of California Press, 115-176. https://doi.org/10.1525/california/9780520247772.003.0005.

Boone, D.R. 1991. Ecology of methanogens. In: Rogers, J.E. & Whitman, W.B., eds. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. Washington: American Society for Microbiology, 39-51.

Borch, T., Kretzschmar, R., Kappler, A., Van Cappellen, P., Ginder-Vogel, M., Voegelin, A., & Campbell, K., 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44(1), 15-23. PMid:20000681. http://dx.doi.org/10.1021/es9026248.

Bowie, G.L., Mills, W.B., Porcella, D.B., Campbell, C.L., Pagenkopf, J.R., Rupp, G.L., Johnson, K.M., Chan, P.W.H., Gherini, S.A., & Chamberlin, C.E., 1985. Rates, constants, and kinetics formulations in surface water quality modeling. Athens: Government Printing Office, 455 p.

Boye, K., Herrmann, A.M., Schaefer, M.V., Tfaily, M.M., & Fendorf, S., 2018. Discerning microbially mediated processes during redox transitions in flooded soils using carbon and energy balances. Front. Environ. Sci. 6, 15. http://dx.doi.org/10.3389/fenvs.2018.00015.

Casco, S.L., & Neiff, J.J., 2006. ¿Cómo se distribuyen las raíces en los bosques inundables de Salix humboldtiana y Tessaria integrifolia del bajo Paraná. Interciencia 31(8), 605-610.

Chapin, F.S., Matson, P.A., & Mooney, H.A., 2002. Principles of terrestrial ecosystem ecology. New York: Springer, 529 p. http://dx.doi.org/10.1007/b97397.

Chapra, S.C., 2008. Surface water-quality modeling. Long Grove: Waveland, 844 p.

Ciminelli, V.S.T., Barbosa, F.A.R., Tundisi, J.G., & Duarte, H.A., 2014. Recursos minerais, água e biodiversidade. Quím. Nova Esc. 8, 39-45.

Conn, E.E., Stumpf, P.K., Bruening, G., & Doi, R.Y., 1987. Outlines of biochemistry. New York: John Wiley and Sons, 693 p.

Conrad, R., 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediment. FEMS Microbiol. Ecol. 28(3), 193-202. http://dx.doi.org/10.1111/j.1574-6941.1999.tb00575.x.

Cunha-Santino, M.B., & Bianchini Júnior, I., 2002. Estequiometria da decomposição aeróbia de galhos, cascas serapilheira e folhas. In: Espíndola, E.L.G., Mauad, F.F., Schalch, V., Rocha, O., Felicidade, N., & Rietzler, A.C., eds. Recursos hidroenergéticos: usos, impactos e planejamento integrado. São Carlos: RiMa, 43-56.

Cunha-Santino, M.B., & Bianchini Júnior, I., 2013. Tropical macrophyte degradation dynamics in freshwater sediments: relationship to greenhouse gas production. J. Soils Sediments 13(8), 1461-1468. http://dx.doi.org/10.1007/s11368-013-0735-x.

Cunha-Santino, M.B., Bianchini Júnior, I., Gianotti, E.P., & Silva, E., 2006. Degradação anaeróbia de macrófitas aquáticas da Lagoa do Infernão: metanogênese. In: Santos, J.E., Pires, J.S., & Moschini, L.E., eds. Estudos Integrados em Ecossistemas - Estação Ecológica de Jataí. São Carlos: EdUFSCar, 143-158.

Cunha-Santino, M.B., Bitar, A.L., & Bianchini Júnior, I., 2013. Chemical constraints on new man-made lakes. Environ. Monit. Assess. 185(12), 10177-10190. PMid:23877574. http://dx.doi.org/10.1007/s10661-013-3322-0.

D'Angelo, E.M., & Reddy, K.R., 1999. Regulators of heterotrophic microbial potentials in wetland soils. Soil Biol. Biochem. 31(6), 815-830. http://dx.doi.org/10.1016/S0038-0717(98)00181-3.

Davidson, E., Samanta, S., Caramori, S.S., & Savage, K., 2012. The dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18(1), 371-384. http://dx.doi.org/10.1111/j.1365-2486.2011.02546.x.

Davidson, N.C., Fluet-Chouinard, E., & Finlayson, C.M., 2018. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69(4), 620. http://dx.doi.org/10.1071/MF17019.

De Gallardo, K., Kaller, M.D., Rutherford, D.A., & Kelso, W.E., 2023. Influence of river disconnection on floodplain periphyton assemblages. Wetlands 43(3), 23. http://dx.doi.org/10.1007/s13157-023-01668-5.

Deemy, J.B., Besterman, A.F., Hall, B.M., Tyler, K.N., & Takagi, K.K., 2022. Nutrient cycling, In: Dalu, T., & Wasserman R.J., eds. Fundamentals of tropical freshwater wetlands. Amsterdam: Elsevier, 133-160. http://dx.doi.org/10.1016/B978-0-12-822362-8.00017-7.

DeLaune, R.D., & Reddy, K.R., 2005. Redox Potential. In: Hillel, H., ed. Encyclopedia of soils in the environment. London: Academic Press, 366-371. http://dx.doi.org/10.1016/B0-12-348530-4/00212-5.

Denef, K., Plante, A.F., & Six, J., 2009. Characterization of soil organic matter. In: Kutsch, W.L., Bahn, M., & Heinemeyer, A., eds. Soil carbon dynamics: an integrated methodology. Cambridge: Cambridge University Press, 91-126.

Dise, N.,2009. Biogeochemical dynamics III: the critical role of carbon in wetlands. In: Barker, T., & Maltby, E. eds. The wetlands handbook. Chichester: Wiley-Blackwell, 249-265. http://dx.doi.org/10.1002/9781444315813.ch11.

Duever, M.J., 1988. Hydrologic processes for models of freshwater wetlands. In: Mitsch, W.J., Straškraba, M., & Jørgensen, S.E., eds. Wetland modelling. Amsterdam: Elsevier, 9-39. http://dx.doi.org/10.1016/B978-0-444-42936-0.50007-9.

Dunn, B., Ai, E., Alger, M.J., Fanson, B., Fickas, K.C., Krause, C.E., Lymburner, L., Nanson, R., Papas, P., Ronan, M., & Thomas, R.F., 2023. Wetlands insight tool: characterising the surface water and vegetation cover dynamics of individual wetlands using multidecadal Landsat satellite data. Wetlands 43(4), 37. http://dx.doi.org/10.1007/s13157-023-01682-7.

Elsey-Quirk, T., & Cornwell, J.C., 2022. Organic matter and nutrient cycling in coastal wetlands and submerged aquatic ecosystems in an age of rapid environmental change -The Anthropocene. J. Mar. Sci. Eng. 10(8), 1096. http://dx.doi.org/10.3390/jmse10081096.

Erhagen, B., Öquist, M., Sparrman, T., Haei, M., Ilstedt, U., Hedenström, M., Schleucher, J., & Nilsson, M.B., 2013. Temperature response of litter and soil organic matter decomposition is determined by chemical composition of organic material. Glob. Chang. Biol. 19(12), 3858-3871. PMid:23907960. http://dx.doi.org/10.1111/gcb.12342.

Evans, D.D., & Scott, A.D., 1955. A polarographic method of measuring dissolved oxygen in saturated soil. Proc.- Soil Sci. Soc. Am. 19(1), 12-16. http://dx.doi.org/10.2136/sssaj1955.03615995001900010003x.

Fenchel, T., 2008. The microbial loop - 25 years later. J. Exp. Mar. Biol. Ecol. 366(1-2), 99-103. http://dx.doi.org/10.1016/j.jembe.2008.07.013.

Fenchel, T., King, G.M., & Blackburn, T.H., 2012. Bacterial biogeochemistry: the ecophysiology of mineral cycling. Amsterdam: Academic Press, 312 p.

Ferreira, T.O., Otero, X.L., Souza Junior, V.S., Vidal-Torrado, P., Macías, F., & Firme, L.P., 2010. Spatial patterns of soil attributes and components in a mangrove system in Southeast Brazil (São Paulo). J. Soils Sediments 10(6), 995-1006. http://dx.doi.org/10.1007/s11368-010-0224-4.

Foti, R., del Jesus, M., Rinaldo, A., & Rodriguez-Iturbe, I., 2012. Hydroperiod regime controls the organization of plant species in wetlands. Proc. Natl. Acad. Sci. USA 109(48), 19596-19600. PMid:23150589. http://dx.doi.org/10.1073/pnas.1218056109.

Gilvear, D.J., & Bradley, C., 2009. Hydrological dynamics II: groundwater and hydrological connectivity. In: Barker, T., & Maltby, E., eds. The wetlands handbook. Chichester: Wiley-Blackwell, 169-193. http://dx.doi.org/10.1002/9781444315813.ch7.

Gimenes, K.Z., Cunha-Santino, M.B., & Bianchini Júnior, I., 2010. Decomposição de matéria orgânica alóctone e autóctone em ecossistemas aquáticos. Oecol. Aust. 14(4), 1075-1112. http://dx.doi.org/10.4257/oeco.2010.1404.13.

Gonçalves Junior, J.F., de Souza Rezende, R., Gregório, R.S., & Valentin, G.C., 2014. Relationship between dynamics of litterfall and riparian plant species in a tropical stream. Limnologica 44, 40-48. http://dx.doi.org/10.1016/j.limno.2013.05.010.

Grootjans, A.P., & Van Diggelen, R., 2009. Hydrological dynamics III: hydro-ecology. In: Barker, T., & Maltby, E., eds. The wetlands handbook. Chichester: Wiley-Blackwell, 194-212. http://dx.doi.org/10.1002/9781444315813.ch8.

Hanson, T.E., Campbell, B.J., Kalis, K.M., Campbell, M.A., & Klotz, M.G., 2013. Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate. Front. Microbiol. 4, 180. PMid:23847604. http://dx.doi.org/10.3389/fmicb.2013.00180.

Heitkamp, F., Jacobs, A., Jungkunst, H.F., Heinze, S., Wendland, M., & Kuzyakov, Y., 2012. Processes of soil carbon dynamics and ecosystem carbon cycling in a changing word. In: Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., & von Braun, J., eds. Recarbonization of the biosphere. Dordrecht: Springer, 395-428. http://dx.doi.org/10.1007/978-94-007-4159-1_18.

Hiraishi, T., Krug, T., Tanabe, K., Srivastava, N., Baasansuren, J., Fukuda, M. & Troxler, T.G., 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Switzerland: IPCC.

Hogarth, P. 2001. Mangrove ecosystems. In: Levin, S.A., ed. Encyclopedia of biodiversity. San Diego: Academic Press, 853-870. http://dx.doi.org/10.1016/B0-12-226865-2/00184-X.

Holguin, G., Vazquez, P., & Bashan, Y., 2001. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol. Fertil. Soils 33(4), 265-278. http://dx.doi.org/10.1007/s003740000319.

Horppila, J., Köngäs, P., Niemistö, J., & Hietanen, S., 2015. Oxygen flux and penetration depth in the sediments of aerated and non-aerated lake basins. Int. Rev. Hydrobiol. 100(3-4), 106-115. http://dx.doi.org/10.1002/iroh.201401781.

Inglett, K.S., Inglett, P.W., Reddy, K.R., & Osborne, T.Z., 2012. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation. Biogeochemistry 108(1-3), 77-90. http://dx.doi.org/10.1007/s10533-011-9573-3.

Inglett, P.W., Reddy, K.R., & Corstanje, R., 2005. Anaerobic soils. In: Hillel, D., ed. Encyclopedia of soils in the environment. London: Academic Press, 72-78. http://dx.doi.org/10.1016/B0-12-348530-4/00178-8.

Junk, W.J., 1984. Ecology of the várzea, floodplain of Amazonian white-water rivers. In: Sioli, H., ed. The Amazon. Limnology and landscape ecology of a mighty tropical river and its basin. Dordrecht: W. Junk, 215-243. http://dx.doi.org/10.1007/978-94-009-6542-3_8.

Jϕrgensen, S.E., 1980. Lake management (water development, supply and management). Oxford: Pergamon Press, 167p.

Kiene, R.P., 1991. Production and consumption of methane in aquatic systems. In: Rogers, J.E., & Whitman, W.B., eds. Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes. Washington: American Society for Microbiology, 111-146.

Killops, S.D., & Killops, V.J., 2013. Introduction to organic geochemistry. Hoboken: Wiley-Blackwell, 408p.

Kirk, G., 2004. The biochemistry of submerged soils. Chichester: John Wiley & Sons, 291p. http://dx.doi.org/10.1002/047086303X.

Klammler, H., Quintero, C.J., Jawitz, J.W., McLaughlin, D.L., & Cohen, M.J., 2020. Local storage dynamics of individual wetlands predict wetlandscape discharge. Water Resour. Res. 56(11), 1-18. http://dx.doi.org/10.1029/2020WR027581.

Kleber, M., 2010. What is recalcitrant soil organic matter? Environ. Chem. 7(4), 320-332. http://dx.doi.org/10.1071/EN10006.

Konhauser, K., 2007. Introduction to geomicrobiology. New York: Blackwell, 440 p.

Langmuir, D., 1997. Aqueous environmental geochemistry. Upper Saddle River: Prentice Hall, 600 p.

Li, B., Feng, M., Chen, X., Wang, Y., Shen, Y., & Wu, Q.L., 2021a. Abundant sediment organic matter potentially facilitates chemical iron reduction and surface water blackness in a Chinese deep lake. Environ. Pollut. 272, 116002. PMid:33246758. http://dx.doi.org/10.1016/j.envpol.2020.116002.

Li, Q., Leroy, F., Zocatelli, R., Gogo, S., Jacotot, A., Guimbaud, C., & Laggoun-Défarge, F., 2021b. Abiotic and biotic drivers of microbial respiration in peat and its sensitivity to temperature change. Soil Biol. Biochem. 153, 108077. http://dx.doi.org/10.1016/j.soilbio.2020.108077.

Li, Y., Chen, Z., Chen, J., Castellano, M.J., Ye, C., Zhang, N., Miao, Y., Zheng, H., Li, J., & Ding, W., 2022. Oxygen availability regulates the quality of soil dissolved organic matter by mediating microbial metabolism and iron oxidation. Glob. Chang. Biol. 28(24), 7410-7427. PMid:36149390. http://dx.doi.org/10.1111/gcb.16445.

Los Huertos, M., & Smith, D., 2013. Wetland bathymetry and mapping. In: Anderson, J.T., & Davis, C.A., eds. Wetland techniques. Dordrecht: Springer, 181-227. http://dx.doi.org/10.1007/978-94-007-6860-4_2.

Madsen, E.L., 2015. Environmental microbiology. From genomes to biogeochemistry. Malden: Blackwell, 592 p.

Mandelstam, J., McQuillen, K., & Dawes, I., 1982. Biochemistry of bacterial growth. Oxford: Blackwell, 449 p.

Mihelcic, J.R., 1999. Fundamentals of environmental engineering. New York. John Wiley, 352 p.

Mitsch, W.J., & Gosselink, J.G., 2015. Wetlands. Hoboken: John Wiley & Sons, 752 p.

Mobilian, C., & Craft, C.B., 2022. Wetland soils: physical and chemical properties and biogeochemical processes. Ref. Modul. Earth Syst. Environ. Sci. 3, 157-168. http://dx.doi.org/10.1016/B978-0-12-819166-8.00049-9.

Neiff, J.J. 1999. El regimen de pulsos en rios y grandes humedales de Sudamérica. In: Malvárez, A.I., ed. Topicos sobre humedales subtropicales y templados de Sudamerica. Montevideo: ORCYT-MAB, 99-149.

Neira, J., Ortiz, M., Morales, L., & Acevedo, E., 2015. Oxygen diffusion in soils: understanding the factors and processes needed for modeling. Chil. J. Agric. Res. 75(1), 35-44. http://dx.doi.org/10.4067/S0718-58392015000300005.

O’Geen, A.T., Budd, R., Gan, J., Maynard, J.J., Parikh, S.J., & Dahlgren, R.A., 2010. Mitigating nonpoint source pollution in agriculture with constructed and restored wetlands. In: Sparks, D., ed. Advances in agronomy. Burlington: Academic Press, 1-76.

Passerini, M.D., Cunha-Santino, M.B., & Bianchini Júnior, I., 2016. Oxygen availability and temperature as driving forces for decomposition of aquatic macrophytes. Aquat. Bot. 130, 1-10. http://dx.doi.org/10.1016/j.aquabot.2015.12.003.

Ponnamperuma, F.N., 1972. The chemistry of submerged soils. Adv. Agron. 24, 29-96. http://dx.doi.org/10.1016/S0065-2113(08)60633-1.

Ramsar Convention Secretariat, 2010. Designating Ramsar sites: Ramsar handbooks (4th ed.). Switzerland: Ramsar Convention Secretariat.

Reddy, K.R., & DeLaune, R.D., 2008. Biochemistry of wetlands: science and applications. Boca Raton: CRC Press, 800 p. http://dx.doi.org/10.1201/9780203491454.

Reddy, K.R., D’Angelo, E.M., & Harris, W.G., 2000. Biogeochemistry of wetlands. Sumner, M.E., ed. Handbook of soil science. Boca Raton: CRC Press, 89-119.

Romeiro, F., & Bianchini Júnior, I., 2006. Anaerobic decomposition of different parts of Scirpus cubensis: kinetics and gas production. Acta Limnol. Bras. 18(2), 145-152.

Romeiro, F., & Bianchini Júnior, I., 2008. Kinetic pathways for anaerobic decomposition of Ludwigia inclinata. Hydrobiologia 607(1), 103-111. http://dx.doi.org/10.1007/s10750-008-9370-8.

Sahrawat, K.L., 2004. Organic matter accumulation in submerged soils. Adv. Agron. 81, 169-201. http://dx.doi.org/10.1016/S0065-2113(03)81004-0.

Schlegel, H.G., 1997. Microbiología general. Barcelona: Omega, 672 p.

Segers, R., 1998. Methane production and methane consumption: a review of process underlying wetlands methane fluxes. Biogeochemistry 41(1), 23-51. http://dx.doi.org/10.1023/A:1005929032764.

Sexstone, A.J., Revsbech, N.P., Parkin, T.B., & Tiedje, J.M., 1985. Direct measurement of oxygen profiles and denitrification rates in soil aggregates. Soil Sci. Soc. Am. J. 49(3), 645-651. http://dx.doi.org/10.2136/sssaj1985.03615995004900030024x.

Sigee, D.C., 2005. Freshwater microbiology. Chichester: John Wiley & Sons, 524 p.

Six, J., & Jastrow, J.D., 2002. Organic matter turnover. In: Lal, R., ed. Encyclopedia of soil science. New York: Marcel Dekker, 936-942.

Smyth, C.E., Kurz, W.A., & Trofymow, J.A., 2011. Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3. Ecol. Modell. 222(5), 1080-1091. http://dx.doi.org/10.1016/j.ecolmodel.2010.12.005.

Stevenson, F.J., 1994. Humus chemistry: genesis, composition, reactions. New York: John Willey, 512 p.

Szafranek-Nakonieczna, A., & Stepniewska, Z., 2014. Aerobic and anaerobic respiration in profiles of Polesie Lubelskie peatlands. Int. Agrophys. 28(2), 219-229. http://dx.doi.org/10.2478/intag-2014-0011.

Takai, Y., Koyama, T., & Kamura, T., 1956. Microbial metabolism in reduction process of paddy soils (part 1). Soil Sci. Plant Nutr. 2(1), 63-66. http://dx.doi.org/10.1080/00380768.1956.10431859.

Thurman, E.M., 1985. Organic geochemistry of natural waters. Dordrecht: Martinus Nijhoff/Dr W. Junk, 497 p. http://dx.doi.org/10.1007/978-94-009-5095-5.

Torn, M.S., Swanston, C.W., Castanha, C., & Trumbore, S.E., 2009. Storage and turnover of organic matter in soil. In: Senesi, N., Xing, B., & Huang, P.M., eds. Biophysico-chemical processes involving natural nonliving organic matter in environmental. Hoboken: John Wiley & Sons, 219-271. http://dx.doi.org/10.1002/9780470494950.ch6.

Tostevin, R., & Poulton, S.W., 2019. Oxic sediments. In: Gargaud, M., Irvine, W.M., Amils, R., Cleaves, H.J., Pinti, D., Quintanilla, J.C. & Viso, M., eds. Encyclopedia of astrobiology, living edition. Berlin: Springer.

Verhoeven, J.T.A., 2009. Wetlands biochemical cycles and their interactions. In: Barker, T., & Maltby, E., eds. The wetlands handbook. Chichester: Wiley-Blackwell, 266-281. http://dx.doi.org/10.1002/9781444315813.ch12.

Wang, H., Ho, M., Flanagan, N., & Richardson, C.J., 2021. The effects of hydrological management on methane emissions from Southeastern shrub bogs of the USA. Wetlands 41(7), 87. http://dx.doi.org/10.1007/s13157-021-01486-7.

Wetzel, R.G., 2001. Limnology: lake and river ecosystems. San Diego: Academic Press, 1006 p.

Wetzel, R.G., 2006. Wetlands ecosystem processes. In: Batzer, D.P. & Sharitz, R.R. (Eds.) Ecology of freshwater and estuarine wetlands. Berkeley: University of California Press, 285-312.

Williams, P.J.B., & del Giogio, P.A., 2005. Respiration in aquatic ecosystems: history and background. In: Del Giorgio, P.A. & Williams, P.J.B., eds. Respiration in aquatic ecosystems. Oxford: Oxford University Press, 1-17. http://dx.doi.org/10.1093/acprof:oso/9780198527084.003.0001.

Wilson, J.S., Baldwin, D.S., Rees, G.N., & Wilson, B.P., 2011. The effects of short-term inundation on carbon dynamics, microbial community structure and microbial activity in floodplain soil. River Res. Appl. 27(2), 213-225. http://dx.doi.org/10.1002/rra.1352.

Yarwood, S.A., 2018. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiol. Ecol. 94(11), fiy175. PMid:30169564. http://dx.doi.org/10.1093/femsec/fiy175.
 


Submitted date:
04/14/2023

Accepted date:
06/27/2023

Publication date:
08/17/2023

64de1d63a9539531fd4f33a4 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections