Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X2923
Acta Limnologica Brasiliensia
Original Article

Beta diversity of Ephemeroptera, Plecoptera and Trichoptera on multiples spatial extents in Xingu River rapids

Diversidade beta de Ephemeroptera, Plecoptera e Trichoptera ao longo de múltiplas escalas espaciais nas corredeiras do rio Xingu

Nayara Monteiro Barreiros; Tommaso Giarrizzo; Bruno Spacek Godoy

Downloads: 0
Views: 727

Abstract

Aim: Additive diversity partitioning has been used to explain the accumulation of diversity at different spatial scales with relative success. In lotic ecosystems, the spatial extent is extremely relevant in studies of diversity accumulation, because it encompasses environmental variation that causes changes in the observed communities. Despite of previous knowledge on the effect of extent on biological communities and diversity accumulation, little is known about the topic in aquatic insect communities in large rivers. In this context, we studied the effect of spatial extent and environmental variation on diversity components, alpha and beta, in Ephemeroptera, Plecoptera and Trichoptera (EPT) groups in Xingu River rapids.

Methods: The sampling was carried out in October 2015 in the dry period of the region, in nine rapids in the Xingu, Bacajá and Iriri rivers. At each collection site, five Surber samples were taken. We also recorded pH, dissolved oxygen, electrical conductivity, water temperature, and geographic coordinates. We used additive diversity partitioning to separate the diversity components α and β. For the spatial component, we generated the spatial filters using PCNM (Principal Coordinates of Neighbour Matrices) and partitioned the variance between space and environment using partial Redundancy Analysis (pRDA).

Results: We collected 12,249 individuals in 27 genera within 11 families in the EPT orders. The greatest accumulation of diversity was observed among rapids of the river, when the β diversity in this spatial extent was greater than the expected. The spatial structure was an indirect effect at this extent, since it is a relevant drive to environmental variables.

Conclusions: The results indicate that the effect of spatial extent on rapids is a contributing factor in the diversity components of aquatic insect communities in large river rapids. To the conservation and management of this environment is necessary cover as many rapids as possible, since the preservation of only a few rapids can mean a substantial loss of regional diversity.

Keywords

diversity partitioning, additive beta diversity, large rivers

Resumo

Objetivo: O particionamento aditivo da diversidade tem sido utilizado para explicar a acumulação de diversidade em diferentes escalas espaciais com relativo sucesso. Em ecossistemas lóticos, a escala espacial é extremamente relevante em estudos de acumulação de diversidade, pois engloba a variação ambiental que causa mudanças nas comunidades observadas. Apesar do conhecimento prévio sobre o efeito da escala nas comunidades biológicas e na acumulação de diversidade, pouco se sabe sobre o tema em comunidades de insetos aquáticos em grandes rios. Neste contexto, estudamos o efeito da escala espacial e da variação ambiental sobre os componentes da diversidade, alfa e beta, em grupos de Ephemeroptera, Plecoptera e Trichoptera (EPT) em corredeiras do rio Xingu.

Métodos: A amostragem foi realizada em outubro de 2015, no período seco da região, em nove corredeiras nos rios Xingu, Bacajá e Iriri. Em cada local de coleta, foram coletadas cinco amostras de Surber. Também foram registradas as variáveis pH, oxigênio dissolvido, condutividade elétrica, temperatura da água e coordenadas geográficas. Usamos o particionamento aditivo da diversidade para separar os componentes de diversidade α e β. Para o componente espacial, geramos os filtros espaciais usando PCNM (Principal Coordinates of Neighbour Matrices) e particionamos a variância entre espaço e ambiente usando a análise de redundância parcial (pRDA).

Resultados: Foram coletados 12.249 indivíduos em 27 gêneros dentro de 11 famílias nas ordens EPT. O maior acúmulo de diversidade foi observado entre as corredeiras do rio, quando a diversidade β nessa escala espacial foi maior que a esperada. A estrutura espacial foi um efeito indireto nesta escala, uma vez que é um direcionador relevante para as variáveis ambientais.

Conclusões: Os resultados indicam que o efeito da escala espacial em corredeiras é um fator contribuinte nos componentes de diversidade das comunidades de insetos aquáticos em corredeiras de grandes rios. Para a conservação e manejo desse ambiente é necessário abranger o maior número possível de corredeiras, uma vez que a preservação de apenas algumas corredeiras pode significar uma perda substancial da diversidade regional.
 

Palavras-chave

partição de diversidade, diversidade beta aditiva, rios grandes

References

Araujo, M.M.V., Pinto, K.J. & Mendes, F.O., 2014. A usina de Belo Monte e os impactos nas terras indígenas. Planeta Amzôn., 6, 43-51.

Balvanera, P., Lott, E., Segura, G., Siebe, C. & Islas, A., 2002. Patterns of β‐diversity in a Mexican tropical dry forest. J. Veg. Sci., 13(2), 145-158. http://dx.doi.org/10.1111/j.1654-1103.2002.tb02034.x.

Baptista, D.F., Buss, D.F., Dorvillé, L.F.M. & Nessimian, J.L., 2001. Diversity and habitat preference of aquatic insects along the longitudinal gradient of the Macaé River basin, Rio de Janeiro, Brazil. Braz. J. Biol., 61(2), 249-258. PMid:11514892. http://dx.doi.org/10.1590/S0034-71082001000200007.

Baptista, V.A., Antunes, M.B., Martello, A.R., Figueiredo, N.S.B., Amaral, A.M.B., Secretti, E. & Braun, B., 2014. Influência de fatores ambientais na distribuição de famílias de insetos aquáticos em rios no sul do Brasil. Ambiente Soc., 17(3), 155-176. http://dx.doi.org/10.1590/S1414-753X2014000300010.

Barros, F.C., Almeida, S.M., Godoy, B.S., Silva, R.R., Silva, L.C., Moraes, K.F. & Santos, M.P.D., 2022. Taxonomic and functional diversity of bird communities in mining areas undergoing passive and active restoration in eastern Amazon. Ecol. Eng., 182, 106721. http://dx.doi.org/10.1016/j.ecoleng.2022.106721.

Barton, P.S., Cunningham, S.A., Manning, A.D., Gibb, H., Lindenmayer, D.B. & Didham, R.K., 2013. The spatial scaling of beta diversity. Glob. Ecol. Biogeogr., 22(6), 639-647. http://dx.doi.org/10.1111/geb.12031.

Bispo, P.C., Oliveira, L.G., Crisci, V.L. & Silva, M.M., 2001. A pluviosidade como fator de alteração da entomofauna bentônica (Ephemeroptera, Plecoptera e Trichoptera) em córregos do Planalto Central do Brasil. Acta Limnol. Bras., 2, 1-9.

Blanchet, F.G., Legendre, P. & Borcard, D., 2008. Forward selection of explanatory variables. Ecology, 89(9), 2623-2632. PMid:18831183. http://dx.doi.org/10.1890/07-0986.1.

Borcard, D. & Legendre, P., 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Modell., 153(1-2), 51-68. http://dx.doi.org/10.1016/S0304-3800(01)00501-4.

Bridgewater, S., Ratter, J.A. & Ribeiro, J.F., 2004. Biogeographic patterns, diversity and dominance in the cerrado biome of Brazil. Biodivers. Conserv., 13(12), 2295-2317. http://dx.doi.org/10.1023/B:BIOC.0000047903.37608.4c.

Bueno, A.A.P., Bond-Buckup, G. & Ferreira, B.D.P., 2003. Estrutura da comunidade de invertebrados bentônicos em dois cursos d’água do Rio Grande do Sul, Brasil. Rev. Bras. Zool., 20(1), 115-125. http://dx.doi.org/10.1590/S0101-81752003000100014.

Ceneviva-Bastos, M., Prates, D.B., Romero, R.M., Bispo, P.C. & Casatti, L., 2017. Trophic guilds of EPT (Ephemeroptera, Plecoptera, and Trichoptera) in three basins of the Brazilian Savanna. Limnologica, 63, 11-17. http://dx.doi.org/10.1016/j.limno.2016.12.004.

Crisci-Bispo, V.L., Bispo, P.C. & Froehlich, C.G., 2007. Ephemeroptera, Plecoptera and Trichoptera assemblages in two Atlantic Rainforest streams, Southeastern Brazil. Rev. Bras. Zoo., 24(2), 312-318. http://dx.doi.org/10.1590/S0101-81752007000200007.

Cummins, K.W. & Klug, M.J., 1979. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst., 10(1), 147-172. http://dx.doi.org/10.1146/annurev.es.10.110179.001051.

Cummins, K.W., Merritt, R.W. & Andrade, P.C., 2005. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Stud. Neotrop. Fauna Environ., 40(1), 69-89. http://dx.doi.org/10.1080/01650520400025720.

Fearnside, P.M., 2014. Impacts of Brazil’s Madeira River Dams: unlearned lessons for hydroelectric development in Amazonia. Environ. Sci. Policy, 38, 164-172. http://dx.doi.org/10.1016/j.envsci.2013.11.004.

Ferreira, W.R., Hepp, L.U., Ligeiro, R., Macedo, D.R., Hughes, R.M., Kaufmann, P.R. & Callisto, M., 2017. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. Ecol. Indic., 72, 365-373. http://dx.doi.org/10.1016/j.ecolind.2016.08.042.

Freire, L., Lima, J. & Silva, E., 2019. Belo Monte: fatos e impactos envolvidos na implantação da usina hidrelétrica na região Amazônica Paraense. Soc. Nat., 30(3), 18-41. http://dx.doi.org/10.14393/SN-v30n3-2018-2.

Frissell, C.A., Liss, W.J., Warren, C.E. & Hurley, M.D., 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ. Manage., 10(2), 199-214. http://dx.doi.org/10.1007/BF01867358.

Fukami, T., Mordecai, E.A. & Ostling, A., 2016. A framework for priority effects. J. Veg. Sci., 27(4), 655-657. http://dx.doi.org/10.1111/jvs.12434.

Geho, E.M., Campbell, D. & Keddy, P.A., 2007. Quantifying ecological filters: the relative impact of herbivory, neighbours, and sediment on an oligohaline marsh. Oikos, 116(6), 1006-1016. http://dx.doi.org/10.1111/j.0030-1299.2007.15217.x.

Godoy, B.S., Camargos, L.M. & Lodi, S., 2018. When phylogeny and ecology meet: modeling the occurrence of Trichoptera with environmental and phylogenetic data. Ecol. Evol., 8(11), 5313-5322. PMid:29938055. http://dx.doi.org/10.1002/ece3.4031.

Godoy, B.S., Faria, A.P.J., Juen, L., Sara, L. & Oliveira, L.G., 2019. Taxonomic sufficiency and effects of environmental and spatial drivers on aquatic insect community. Ecol. Indic., 107, 105624. http://dx.doi.org/10.1016/j.ecolind.2019.105624.

Godoy, B.S., Ishihara, J.H., Aguiar, R.L. & Teixeira, O.N., 2023. 50 years of the water-flow variance in Tucuruí reservoir related with Brazilian energy consumption. Heliyon, 9(2), e12640. PMid:36761823. http://dx.doi.org/10.1016/j.heliyon.2022.e12640.

Godoy, B.S., Queiroz, L.L., Lodi, S. & Oliveira, L.G., 2017. Environment and spatial influences on aquatic insect communities in Cerrado streams: the relative importance of conductivity, altitude, and conservation areas. Neotrop. Entomol., 46(2), 151-158. PMid:27909952. http://dx.doi.org/10.1007/s13744-016-0452-4.

Godoy, B.S., Queiroz, L.L., Simião-Ferreira, J., Lodi, S., Camargos, L.M. & Oliveira, L.G., 2022a. The effect of spatial scale on the detection of environmental drivers on aquatic insect communities in pristine and altered streams of the Brazilian Cerrado. Int. J. Trop. Insect Sci., 42(3), 2173-2182. http://dx.doi.org/10.1007/s42690-022-00738-1.

Godoy, B.S., Simião-Ferreira, J., Lodi, S. & Oliveira, L.G., 2016. Functional process zones characterizing aquatic insect communities in streams of the Brazilian Cerrado. Neotrop. Entomol., 45(2), 159-169. PMid:26830433. http://dx.doi.org/10.1007/s13744-015-0352-z.

Godoy, B.S., Valente‐Neto, F., Queiroz, L.L., Holanda, L.F.R., Roque, F.O., Lodi, S. & Oliveira, L.G., 2022b. Structuring functional groups of aquatic insects along the resistance/resilience axis when facing water flow changes. Ecol. Evol., 12(3), e8749. PMid:35356588. http://dx.doi.org/10.1002/ece3.8749.

Guénard, G., Legendre, P., Boisclair, D. & Bilodeau, M., 2010. Multiscale codependence analysis: an integrated approach to analyze relationships across scales. Ecology, 91(10), 2952-2964. PMid:21058555. http://dx.doi.org/10.1890/09-0460.1.

Hamada, N., Nessimian, J. & Querino, R., 2019. Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Manaus: Editora INPA.

Hamer, K.C. & Hill, J.K., 2000. Scale-dependent effects of habitat disturbance on species richness in tropical forests. Conserv. Biol., 14(5), 1435-1440. http://dx.doi.org/10.1046/j.1523-1739.2000.99417.x.

Hastings, A., Petrovskii, S. & Morozov, A., 2011. Spatial ecology across scales. Biol. Lett., 7(2), 163-165. PMid:21068027. http://dx.doi.org/10.1098/rsbl.2010.0948.

Heino, J., 2009. Biodiversity of aquatic insects: spatial gradients and environmental correlates of assemblage-level measures at large scales. Freshw. Rev., 2(1), 1-29. http://dx.doi.org/10.1608/FRJ-2.1.1.

Heino, J., Melo, A.S. & Bini, L.M., 2015. Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshw. Biol., 60(2), 223-235. http://dx.doi.org/10.1111/fwb.12502.

Hepp, L.U. & Melo, A.S., 2013. Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia, 703(1), 239-246. http://dx.doi.org/10.1007/s10750-012-1367-7.

Jackson, D.A. & Harvey, H.H., 1989. Biogeographic associations in fish assemblages: local vs. regional processes. Ecology, 70(5), 1472-1484. http://dx.doi.org/10.2307/1938206.

Landeiro, V.L., Bini, L.M., Melo, A.S., Pes, A.M.O. & Magnusson, W.E., 2012. The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshw. Biol., 57(8), 1554-1564. http://dx.doi.org/10.1111/j.1365-2427.2012.02816.x.

Leal, T.B., Oliveira, R.S., Giarrizzo, T. & Godoy, B.S., 2023. The drift effect on nestedness of Ephemeroptera, Trichoptera and Plecoptera orders in the Xingu River. Biota Neotrop., 23(1), e20221354. http://dx.doi.org/10.1590/1676-0611-bn-2022-1354.

Legendre, P. & Legendre, L.F.J., 2012. Numerical ecology (3rd ed.). Amsterdam: Elsevier.

Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., Tilman, D., Loreau, M. & Gonzalez, A., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett., 7(7), 601-613. http://dx.doi.org/10.1111/j.1461-0248.2004.00608.x.

Ligeiro, R., Melo, A.S. & Callisto, M., 2010. Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshw. Biol., 55(2), 424-435. http://dx.doi.org/10.1111/j.1365-2427.2009.02291.x.

Merritt, R.W., Cummins, K.W. & Berg, M.B., 2008. An introduction to the aquatic insects of North America (4th ed.). Dubuque: Kendall/Hunt Publishing Company.

Monteiro, T.R., Oliveira, L.G. & Godoy, B.S., 2008. Biomonitoramento da qualidade de água utilizando macroinvertebrados bentônicos: adaptação do índice biótico BMWP’ à bacia do rio Meia Ponte - GO. Oecol. Aust., 12(3), 553-563. http://dx.doi.org/10.4257/oeco.2008.1203.13.

Moraga, A.D., Martin, A.E. & Fahrig, L., 2019. The scale of effect of landscape context varies with the species’ response variable measured. Landsc. Ecol., 34(4), 703-715. http://dx.doi.org/10.1007/s10980-019-00808-9.

Mykrä, H., Heino, J. & Muotka, T., 2007. Scale-related patterns in the spatial and environmental components of stream macroinvertebrate assemblage variation. Glob. Ecol. Biogeogr., 16(2), 149-159. http://dx.doi.org/10.1111/j.1466-8238.2006.00272.x.

Norte-Energia, 2016. UHE Belo Monte [online]. Retrieved in 2023, August 11, from https://www.norteenergiasa.com.br/pt-br/uhe-belo-monte/vazoes-e-niveis-do-rio-xingu-100755

Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H. H., & Wagner, H., 2012. Community ecology package. R Package Version [online]. Retrieved in 2023, September 06, from http://vegan.r-forge.r-project.org.

Patrick, C.J. & Yuan, L.L., 2019. The challenges that spatial context present for synthesizing community ecology across scales. Oikos, 128(3), 297-308. PMid:32467652. http://dx.doi.org/10.1111/oik.05802.

Peltonen, M., Heliövaara, K., Väisänen, R. & Keronen, J., 1998. Bark beetle diversity at different spatial scales. Ecography (Online), 21(5), 510-517. Retrieved in 2023, August 11, from http://www.jstor.org/stable/3682887

R Development Core Team, 2020. R: a language and environment for statistical computing [online]. Retrieved in 2023, August 11, from https://www.r-project.org/

Ricklefs, R.E., 1987. Community diverstiy: relative roles of local and regional processes. Science, 235(4785), 167-171. PMid:17778629. http://dx.doi.org/10.1126/science.235.4785.167.

Ricklefs, R.E., 2006. Evolutionary diversification and the origin of the diversity-environment relationship. Ecology, 87(Suppl. 7), S3-S13. PMid:16922298. http://dx.doi.org/10.1890/0012-9658(2006)87[3:EDATOO]2.0.CO;2.

Rosenberg, D. & Resh, V.H., 1993. Freshwater biomonitoring and benthic macroinvertebrates. New York: Chapman & Hall.

Salomão, R.P., Vieira, I.C.G., Suemitsu, C., Rosa, N.A., Almeida, S.S., Amaral, D.D. & Menezes, M.P.M., 2007. As florestas de Belo Monte na grande curva do rio Xingu, Amazônia Oriental. Bol. Mus. Para. Emílio Goeldi. Ciênc. Nat., 2(3), 57-153.

Sepkoski Junior, J.J., 1988. Alpha, beta, or gamma: where does all the diversity go? Paleobiology, 14(3), 221-234. PMid:11542147. http://dx.doi.org/10.1017/S0094837300011969.

Serviço Geológico do Brasil - CPRM, 2023. Bacia do Rio Xingu - características [online]. Retrieved in 2023, August 11, from https://www.cprm.gov.br/sace/xingu_caracteristicas.php.

Sheffield, J., Goteti, G. & Wood, E.F., 2006. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim., 19(13), 3088-3111. http://dx.doi.org/10.1175/JCLI3790.1.

Sioli, H. 1968. Hydrochemistry and Geology in the Brazilian Amazon Region. Amazoniana, 1(3), 267-277.

Suring, L.H., 2022. Imperiled freshwater ecosystems: an overview. In DellaSala, D.A. & Goldstein, M.I., eds. Imperiled: the encyclopedia of conservation. Amsterdam: Elsevier, 345-350. http://dx.doi.org/10.1016/B978-0-12-821139-7.00221-X.

Thorp, J.H., Thoms, M.C. & Delong, M.D., 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl., 22(2), 123-147. http://dx.doi.org/10.1002/rra.901.

Veech, J.A. & Crist, T.O., 2007. Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Glob. Ecol. Biogeogr., 16(5), 650-656. http://dx.doi.org/10.1111/j.1466-8238.2007.00315.x.

Veech, J.A., 2005. Analyzing patterns of species diversity as departures from random expectations. Oikos, 108(1), 149-155. http://dx.doi.org/10.1111/j.0030-1299.2005.13506.x.

Veech, J.A., Summerville, K.S., Crist, T.O. & Gering, J.C., 2002. The additive partitioning of species diversity: recent revival of an old idea. Oikos, 99(1), 3-9. http://dx.doi.org/10.1034/j.1600-0706.2002.990101.x.

Vellend, M., 2010. Conceptual synthesis in community ecology. Q. Rev. Biol., 85(2), 183-206. PMid:20565040. http://dx.doi.org/10.1086/652373.

Wallace, J.B. & Webster, J.R., 1996. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol., 41(1), 115-139. PMid:15012327. http://dx.doi.org/10.1146/annurev.en.41.010196.000555.

Whittaker, R., 1960. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr., 30(3), 279-338. http://dx.doi.org/10.2307/1943563.
 


Submitted date:
04/06/2023

Accepted date:
08/11/2023

Publication date:
10/06/2023

65201c3ea953951f38728fc2 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections