Incorporating symmetrical and asymmetrical dispersal into Ecological Niche Models in freshwater environments
Incorporando dispersão simétrica e assimétrica em Modelos de Nicho Ecológico em ambientes de água doce
Micael Rosa Parreira; Geiziane Tessarolo; João Carlos Nabout
Abstract
Keywords
Resumo
Palavras-chave
References
Acevedo, M.A., & Fletcher Junior, R.J., 2017. The proximate causes of asymmetric movement across heterogeneous landscapes. Landsc. Ecol. 32(6), 1285-1297.
Acevedo, M.A., Beaudrot, L., Meléndez-Ackerman, E.J., & Tremblay, R.L., 2020. Local extinction risk under climate change in a neotropical asymmetrically dispersed epiphyte. J. Ecol. 108(4), 1553-1564.
Acevedo, M.A., Fletcher Junior, R.J., Tremblay, R.L., & Meléndez-Ackerman, E.J., 2015. Spatial asymmetries in connectivity influence colonization−extinction dynamics. Oecologia 179(2), 415-424. PMid:26054613.
Allouche, O., Tsoar, A., & Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43(6), 1223-1232.
Altermatt, F., 2013. Diversity in riverine metacommunities: a network perspective. Aquat. Ecol. 47(3), 365-377.
Altermatt, F., Seymour, M., & Martinez, N., 2013. River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. J. Biogeogr. 40(12), 2249-2260.
Anderson, R.P., 2013. A framework for using niche models to estimate impacts of climate change on species distributions. Ann. N. Y. Acad. Sci. 1297(1), 8-28. PMid:25098379.
Araújo, M.B., & Peterson, A.T., 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93(7), 1527-1539. PMid:22919900.
Arribas, P., Velasco, J., Abellán, P., Sánchez‐Fernández, D., Andujar, C., Calosi, P., Millán, A., Ribera, I., & Bilton, D.T., 2012. Dispersal ability rather than ecological tolerance drives differences in range size between lentic and lotic water beetles (Coleoptera: hydrophilidae). J. Biogeogr. 39(5), 984-994.
Barbet-Massin, M., Jiguet, F., Albert, C.H., & Thuiller, W., 2012a. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol. 3(2), 327-338.
Barbet-Massin, M., Thuiller, W., & Jiguet, F., 2012b. The fate of European breeding birds under climate, land-use and dispersal scenarios. Glob. Change Biol. 18(3), 881-890.
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., Soberón, J., & Villalobos, F., 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. Elsevier B. 222(11), 1810-1819.
Bie, T.D., Meester, L.D., Brendonck, L., Martens, K., Goddeeris, B., Ercken, D., Hampel, H., Denys, L., Vanhecke, L., Van der Gucht, K., Van Wichelen, J., Vyverman, W., & Declerck, S.A., 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol. Lett. 15(7), 740-747. PMid:22583795.
Blanchet, F.G., Legendre, P., & Borcard, D., 2008. Modelling directional spatial processes in ecological data. Ecol. Modell. 215(4), 325-336.
Blanchet, F.G., Legendre, P., Maranger, R., Monti, D., & Pepin, P., 2011. Modelling the effect of directional spatial ecological processes at different scales. Oecologia 166(2), 357-368. PMid:21170750.
Borcard, D., & Legendre, P., 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Modell. 153(1-2), 51-68.
Breiman, L., 2001. Random forests. Mach. Learn. 45(1), 5-32.
Bush, A., & Hoskins, A.J., 2017. Does dispersal capacity matter for freshwater biodiversity under climate change? Freshw. Biol. 62(2), 382-396.
Cardador, L., Sardà-Palomera, F., Carrete, M., & Mañosa, S., 2014. Incorporating spatial constraints in different periods of the annual cycle improves species distribution model performance for a highly mobile bird species. Divers. Distrib. 20(5), 515-528.
Carpenter, G., Gillison, A.N., & Winter, J., 1993. Domain - a flexible modeling procedure for mapping potential distributions of plants and animals. Biodivers. Conserv. 2(6), 667-680.
Carvalho, D.L., Sousa-Neves, T., Cerqueira, P.V., Gonsioroski, G., Silva, S.M., Silva, D.P., & Santos, M.P.D., 2017. Delimiting priority areas for the conservation of endemic and threatened Neotropical birds using a niche-based gap analysis. PLoS One 12(2), e0171838. PMid:28187182.
Cliff, A.D., & Ord, J.k., 1981. Spatial processes - models and applications. London: Pion.
Cunha, H.F., Ferreira, É.D., Tessarolo, G., & Nabout, J.C., 2018. Host plant distributions and climate interact to affect the predicted geographic distribution of a Neotropical termite. Biotropica 50(4), 625-632.
Dalui, S., Khatri, H., Singh, S.K., Basu, S., Ghosh, A., Mukherjee, T., Sharma, L.K., Singh, R., Chandra, K., & Thakur, M., 2020. Fine-scale landscape genetics unveiling contemporary asymmetric movement of red panda (
Diniz-Filho, J.A.F., & Bini, L.M., 2005. Modelling geographical patterns in species richness using eigenvector-based spatial filters. Glob. Ecol. Biogeogr. 14(2), 177-185.
Diniz-Filho, J.A.F., Bini, L.M., Rangel, T.F., Loyola, R.D., Hof, C., Nogués-Bravo, D., & Araújo, M.B., 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32, 897-906.
Domisch, S., Jähnig, S.C., Simaika, J.P., Kuemmerlen, M., & Stoll, S., 2015. Application of species distribution models in stream ecosystems: the challenges of spatial and temporal scale, environmental predictors and species occurrence data. Arch. Hydrobiol. 186(1-2), 45-61.
Dong, X., Li, B., He, F., Gu, Y., Sun, M., Zhang, H., Tan, L., Xiao, W., Liu, S., & Cai, Q., 2016. Flow directionality, mountain barriers and functional traits determine diatom metacommunity structuring of high mountain streams. Sci. Rep. 6(1), 24711. PMid:27090223.
Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guenard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., & Wagner, H.H., 2019. Adespatial: multivariate multiscale spatial analysis [online]. Retrieved in 2023, June 20, from
Engler, R., Hordijk, W., & Guisan, A., 2012. The MIGCLIM R package - seamless integration of dispersal constraints into projections of species distribution models. Ecography 35(10), 872-878.
Ferreira, R.B., Parreira, M.R., & Nabout, J.C., 2021. The impact of global climate change on the number and replacement of provisioning ecosystem services of Brazilian Cerrado plants. Environ. Monit. Assess. 193(11), 731. PMid:34664119.
Froese, R., & Pauly, D., 2019. FishBase [online]. Retrieved in 2023, June 20, from
Gherghel, I., Brischoux, F., & Papeş, M., 2018. Using biotic interactions in broad-scale estimates of species’ distributions. J. Biogeogr. 45(9), 2216-2225.
Griffith, D.A., & Peres-Neto, P.R., 2006. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87(10), 2603-2613. PMid:17089668.
Guisan, A., & Zimmermann, N.E., 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135(2-3), 147-186.
Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis-Lewis, I., Sutcliffe, P.R., Tulloch, A.I.T., Regan, T.J., Brotons, L., McDonald-Madden, E., Mantyka-Pringle, C., Martin, T.G., Rhodes, J.R., Maggini, R., Setterfield, S.A., Elith, J., Schwartz, M.W., Wintle, B.A., Broennimann, O., Austin, M., Ferrier, S., Kearney, M.R., Possingham, H.P., & Buckley, Y.M., 2013. Predicting species distributions for conservation decisions. Ecol. Lett. 16(12), 1424-1435. PMid:24134332.
Heino, J., Melo, A.S., Siqueira, T., Soininen, J., Valanko, S., & Bini, L.M., 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60(5), 845-869.
Hijmans, R.J., 2019. Raster: geographic data analysis and modeling [online]. Retrieved in 2023, June 20, from
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., & Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25(15), 1965-1978.
Hijmans, R.J., Phillips, S.J., Leathwick, J.R., & Hortal, J., 2016. Dismo: species distribution modeling. R package version 1.1-1 [online]. Retrieved in 2023, June 20, from
Holloway, P., Miller, J.A., & Gillings, S., 2016. Incorporating movement in species distribution models: how do simulations of dispersal affect the accuracy and uncertainty of projections? Int. J. Geogr. Inf. Sci. 30, 1-25.
Jackson, D.A., 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74(8), 2204-2214.
Jiménez-Valverde, A., Peterson, A.T., Soberón, J., Overton, J.M., Aragón, P., & Lobo, J.M., 2011. Use of niche models in invasive species risk assessments. Biol. Invasions 13(12), 2785-2797.
Mendes, P., Velazco, S.J.E., Andrade, A.F.A., & De Marco, P., 2020. Dealing with overprediction in species distribution models: how adding distance constraints can improve model accuracy. Ecol. Modell. 431, 109180.
Miller, J.A., & Holloway, P., 2015. Incorporating movement in species distribution models. Prog. Phys. Geogr. 39(6), 837-849.
Monsimet, J., Devineau, O., Pétillon, J., & Lafage, D., 2020. Explicit integration of dispersal-related metrics improves predictions of SDM in predatory arthropods. Sci. Rep. 10(1), 16668. PMid:33028838.
Mozzaquattro, L.B., Dala-Corte, R.B., Becker, F.G., & Melo, A.S., 2020. Effects of spatial distance, physical barriers, and habitat on a stream fish metacommunity. Hydrobiologia 847(14), 3039-3054.
Nabout, J.C., Oliveira, G., Magalhães, M.R., Carina, T.L., & Almeida, F.A.S., 2011. Global climate change and the production of pequi fruits (
Nelder, J.A., & Wedderburn, R.W.M., 1972. Generalized linear models. J. R. Stat. Soc. Ser. A Stat. Soc. 135(3), 370-384.
Nix, H.A., 1986. A biogeographic analysis of Australian elapid snakes. In: Longmore, R., ed. Atlas of elapid snakes of Australia. Canberra: Australian Government Publishing Service, 4-15.
Oksanen, J., F. Blanchet, M. Friendly, R. Kindt, & P. Legendre, 2017. Vegan: community ecology package. R package version 2.4-3 [online]. Retrieved in 2023, June 20, from
Parreira, M.R., Nabout, J.C., Tessarolo, G., Lima-Ribeiro, M.S., & Teresa, F.B., 2019. Disentangling uncertainties from niche modeling in freshwater ecosystems. Ecol. Modell. 391, 1-8.
Pavlacky Junior, D.C., Possingham, H.P., Lowe, A.J., Prentis, P.J., Green, D.J., & Goldizen, A.W., 2012. Anthropogenic landscape change promotes asymmetric dispersal and limits regional patch occupancy in a spatially structured bird population. J. Anim. Ecol. 81(5), 940-952. PMid:22489927.
Perrin, S.W., Englund, G., Blumentrath, S., O’Hara, R.B., Amundsen, P.-A., & Finstad, A.G., 2020. Integrating dispersal along freshwater ecosystems into species distribution models. Divers. Distrib. 26(11), 1598-1611.
Peterson, A.T., & Soberón, J., 2012. Species Distribution Modeling and Ecological Niche Modeling: getting the concepts right. Nat. Conserv. 10(2), 102-107.
Peterson, A.T., 2006. Uses and requirements of Ecological Niche Models and Related Distributional Models. Biodivers. Inform. 3, 59-72.
Peterson, A.T., Martínez-Campos, C., Nakazawa, Y., & Martínez-Meyer, E., 2005. Time-specific Ecological Niche Modeling predicts spatial dynamics of vector insects and human dengue cases. Trans. R. Soc. Trop. Med. Hyg. 99(9), 647-655. PMid:15979656.
Peterson, A.T., Sánchez-Cordero, V., Martínez-Meyer, E., & Navarro-Sigüenza, A.G., 2006. Tracking population extirpations via melding ecological niche modeling with land-cover information. Ecol. Modell. 195(3-4), 229-236.
Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M., & Araújo, M.B., 2011. Ecological niches and geographic distributions. Princenton: Princenton University Press.
Phillips, S.J., Anderson, R.P., & Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3-4), 231-259.
Pringle, J.M., Blakeslee, A.M.H., Byers, J.E., & Roman, J., 2011. Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range. Proc. Natl. Acad. Sci. USA 108(37), 15288-15293. PMid:21876126.
R Core Team, 2019. R: a language and environment for statistical computing [online]. Retrieved in 2023, June 20, from
Rangel, T.F., & Loyola, R.D., 2012. Labeling Ecological Niche Models. Nat. Conserv. 10(2), 119-126.
Reis, R.E., Kullander, S.O., & Ferraris, C.J., 2003. Check list of the freshwater fishes of South and Central America. Porto Alegre: EDIPUCRS.
Revelle, W., 2019. Psych: procedures for psychological, psychometric, and personality research [online]. Retrieved in 2023, June 20, from
Rieux, A., Soubeyrand, S., Bonnot, F., Klein, E.K., Ngando, J.E., Mehl, A., Ravigne, V., Carlier, J., & Bellaire, L.L., 2014. Long-distance wind-dispersal of spores in a fungal plant pathogen: estimation of anisotropic dispersal kernels from an extensive field experiment. PLoS One 9(8), e103225. PMid:25116080.
Riginos, C., Hock, K., Matias, A.M., Mumby, P.J., van Oppen, M.J.H., & Lukoschek, V., 2019. Asymmetric dispersal is a critical element of concordance between biophysical dispersal models and spatial genetic structure in Great Barrier Reef corals. Divers. Distrib. 25(11), 1684-1696.
Rocha, B.S., Souza, C.A., Machado, K.B., Vieira, L.C.G., & Nabout, J.C., 2020. The relative influence of the environment, land use, and space on the functional and taxonomic structures of phytoplankton and zooplankton metacommunities in tropical reservoirs. Freshwat. Sci. 39(2), 321-333.
Ruaro, R., Conceição, E.O., Silva, J.C., Cafofo, E.G., Angulo-Valencia, M.A., Mantovano, T., Pineda, A., Paula, A.C.M., Zanco, B.F., Capparros, E.M., Moresco, G.A., Oliveira, I.J., Antiqueira, J.L., Ernandes-Silva, J., Silva, J.V.F., Adelino, J.R.P., Santos, J.A., Ganassin, M.J.M., Iquematsu, M.S., Landgraf, G.O., Lemes, P., Cassemiro, F.A.S., Batista-Silva, V.F., Diniz-Filho, J.A.F., Rangel, T.F., Agostinho, A.A., & Bailly, D., 2019. Climate change will decrease the range of a keystone fish species in La Plata River Basin, South America. Hydrobiologia 836(1), 1-19.
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., & Williamson, R.C., 2001. Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443-1471. PMid:11440593.
Soberón, J., 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10(12), 1115-1123. PMid:17850335.
Swets, J.A., 1988. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285-1293. PMid:3287615.
Tamme, R., Götzenberger, L., Zobel, M., Bullock, J.M., Hooftman, D.A., Kaasik, A., & Pärtel, M., 2014. Predicting species’ maximum dispersal distances from simple plant traits. Ecology 95(2), 505-513. PMid:24669743.
Uribe-Rivera, D.E., Soto-Azat, C., Valenzuela-Sánchez, A., Bizama, G., Simonetti, J.A., & Pliscoff, P., 2017. Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin’s frog. Ecol. Appl. 27(5), 1633-1645. PMid:28397328.
Vasudev, D., Fletcher Junior, R.J., Goswami, V.R., & Krishnadas, M., 2015. From dispersal constraints to landscape connectivity: lessons from species distribution modeling. Ecography 38(10), 967-978.
Ver Hoef, J.M., Peterson, E., & Theobald, D., 2006. Spatial statistical models that use flow and stream distance. Environ. Ecol. Stat. 13(4), 449-464.
Submitted date:
04/03/2023
Accepted date:
06/20/2023
Publication date:
07/25/2023