Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X2621
Acta Limnologica Brasiliensia
Original Article

Phosphorus sorption potential of natural adsorbent materials from a Brazil semiarid region to control eutrophication

Potencial de sorção de fósforo de materiais adsorventes naturais da região semiárida do Brasil para controle da eutrofização

Fernanda Monicelli; Karina Patrícia Vieira da Cunha; Fabiana Araújo; Vanessa Becker

Downloads: 0
Views: 930

Abstract

Abstract:: Aim: The aim of the present study was to evaluate the potential soluble reactive phosphorus (SRP) sorption of three natural P adsorbents (Luvisol, Planosol, and Scheelite tailing) from Brazil’s semiarid region.

Methods: The adsorption tests were done under pH 8 conditions with the natural adsorbents and Lanthanum-Modified Bentonite (LMB). The effect of humic substances on SRP sorption was also tested. For this, Luvisol and Planosol were incinerated to reduce their humic components, and new adsorption tests were done. The effect of adsorbents on water pH was also evaluated.

Results: The SRP sorption potential of the natural adsorbents was high at pH 8. Of the natural adsorbents, Luvisol achieved the highest maximum SRP adsorption capacity (Q) of 17.5 mg g-1, followed by Scheelite tailing (8.3 mg g-1) and Planosol (7.7 mg g-1). Scheelite tailing, Planosol and LMB increased the pH of the water. After treatment to reduce humic substances, Planosol showed a Q of 22.3 mg g-1 while Luvisol produced 11.1mg g-1. Reducing the amount of humic substances potentiated the sorption process in the Planosol. However, the isotherms of untreated Luvisol and treated Planosol have not reached equilibrium and therefore may be overestimated.

Conclusions: The precipitation process was probably the main sorption mechanism, being more expressive than adsorption. Scheelite tailing was the most promising material for eutrophic environments because it is alkaline, calcium-rich, and this capacity will probably remain high under anoxic conditions. It also has a small amount of organic matter and, consequently, contains less humic substances. The quality of the clay present in natural adsorbents was more important than quantity in the sorption process.

Keywords

adsorption tests, clay minerals, humic substances, Langmuir isoterm, mitigation

Resumo

Resumo:: Objetivo: O objetivo do presente estudo foi avaliar o potencial de sorção de fósforo reativo solúvel (FRS) de três adsorventes naturais (Luvisol, Planosol e rejeito de Scheelita) da região semiárida do Brasil.

Métodos: Os testes de adsorção foram realizados sob pH 8, com os adsorventes naturais e com a Bentonita Modificada com Lantânio (BML). O efeito de substâncias húmicas na sorção de FRS também foi testado. Para isso, o Luvisol e o Planosol foram incinerados para redução das substâncias húmicas e novos testes de adsorção foram realizados. O efeito dos adsorventes no pH da água também foi avaliado.

Resultados: O potencial de sorção FRS dos adsorventes naturais foi alto em pH 8. Dos adsorventes naturais, Luvisol atingiu a maior capacidade máxima de adsorção FRS (Q) de 17,5 mg g-1, seguido pelo Rejeito de Scheelita (8,3 mg g-1) e Planosol (7,7 mg g-1). O Rejeito de Scheelita, Planosol e BML aumentaram o pH da água. Após tratamento para redução de substâncias húmicas, Planosol apresentou Q de 22,3 mg g-1 e Luvisol de 11,1 mg g-1. A redução da quantidade de substâncias húmicas potencializou o processo de sorção no Planosol. No entanto, as isotermas do Luvisol não tratado e do planol tratado não atingiram o equilíbrio e, portanto, podem estar superestimadas.

Conclusões: O processo de precipitação foi provavelmente o principal mecanismo de sorção, sendo mais expressivo que a adsorção. O Rejeito de Scheelita foi o material mais promissor para ambientes eutróficos por ser alcalino, rico em cálcio, e essa capacidade provavelmente permanecerá alta em condições anóxicas. Além disso, possui pequena quantidade de matéria orgânica e, conseqüentemente, menos substâncias húmicas. A qualidade da argila presente nos adsorventes naturais foi mais importante do que a sua quantidade no processo de sorção.
 

Palavras-chave

testes de adsorção, minerais de argila, substâncias húmicas, isotermas de Langmuir, mitigação

References

AGBENIN, J.O. and TIESSEN, H. The effects of soil properties on the differential phosphate sorption by semiarid soils from Northeast Brazil. Soil Science, 1994, 157(1), 36-45. http://dx.doi.org/10.1097/00010694-199401000-00006.

ALVARES, C.A., STAPE, J.L., SENTELHAS, P.C., GONÇALVES, J.L.M. and SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorology, 2013, 22(6), 711-728. http://dx.doi.org/10.1127/0941-2948/2013/0507.

ANDERSEN, J.M. Influence of pH on release of phosphorus from lake sediments. Archiv für Hydrobiologie, 1975, 76, 411-419.

BARBOSA, J.E., MEDEIROS, E.S.F., BRASIL, J., CORDEIRO, R.S., CRISPIM, M.C.B. and SILVA, G.H.G. Aquatic systems in semi-arid Brazil: limnology and management. Acta Limnologica Brasilienses, 2012, 24(1), 103-118. http://dx.doi.org/10.1590/S2179-975X2012005000030.

BRAGA, G.G. and BECKER, V. Influence of water volume reduction on the phytoplankton dynamics in a semiarid man-made lake: a comparison of two morphofunctional approaches. Anais da Academia Brasileira de Ciências, 2020, 92(1), e20181102. http://dx.doi.org/10.1590/0001-3765202020181102. PMid:32187255.

BRASIL, J., ATTAYDE, J.L., VASCONCELOS, F.R., DANTAS, D.D.F. and HUSZAR, V.L.M. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia, 2016, 770(1), 145-164. http://dx.doi.org/10.1007/s10750-015-2578-5.

CAVALCANTE, H., ARAÚJO, F., NOYMA, N.P. and BECKER, V. Phosphorus fractionation in sediments of tropical semiarid reservoirs. The Science of the Total Environment, 2018, 619-620, 1022-1029. http://dx.doi.org/10.1016/j.scitotenv.2017.11.204. PMid:29734580.

COELHO, A.C.V., SANTOS, P.S. and SANTOS, H.S. Argilas especiais: argilas quimicamente modificadas: uma revisão. Química Nova, 2007, 30(5), 1282-1294. http://dx.doi.org/10.1590/S0100-40422007000500042.

COPETTI, D., FINSTERLE, K., MARZIALI, L., STEFANI, F., TARTARI, G., DOUGLAS, G., REITZEL, K., SPEARS, B.M., WINFIELD, I.J., CROSA, G., D’HAESE, P., YASSERI, S. and LÜRLING, M. Eutrophication management in surface waters using lanthanum modified bentonite: A review. Water Research, 2016, 97, 162-174. http://dx.doi.org/10.1016/j.watres.2015.11.056. PMid:26706125.

CORRÊA, R.M., NASCIMENTO, C.W.A. and ROCHA, A.T. Adsorção de fósforo em dez solos do Estado de Pernambuco e suas relações com parâmetros físicos e químicos. Acta Scientiarum. Agronomy, 2011, 33(1), 153-159. http://dx.doi.org/10.4025/actasciagron.v33i1.3129.

COSTA, I.A.S., CUNHA, S.R.S., PANOSSO, R., ARAÚJO, M.F., MELO, J.L.S. and ESKINAZI-SANT’ANNA, E.M. Dinâmica de cianobactérias em reservatórios eutróficos do semi-árido do Rio Grande do Norte. Oecologia Australis, 2009, 13(2), 382-401. http://dx.doi.org/10.4257/oeco.2009.1302.11.

DE-MAGALHÃES, L., NOYMA, N.P., FURTADO, L.L., DRUMMOND, E., LEITE, V.B.G., MUCCI, M., VAN OOSTERHOUT, F., HUSZAR, V.L.M., LÜRLING, M. and MARINHO, M.M. Managing eutrophication in a tropical brackish water lagoon: testing lanthanum-modified clay and coagulant for internal load reduction and cyanobacteria bloom removal. Estuaries and Coasts, 2019, 42(2), 390-402. http://dx.doi.org/10.1007/s12237-018-0474-8.

DE-MAGALHÃES, L., NOYMA, N.P., FURTADO, L.L., MUCCI, M., VAN OOSTERHOUT, F., HUSZAR, V.L.M., MARINHO, M.M. and LÜRLING, M. Efficacy of Coagulants and Ballast Compounds in Removal of Cyanobacteria (Microcystis) from Water of the Tropical Lagoon Jacarepaguá (Rio de Janeiro, Brazil). Estuaries and Coasts, 2017, 40(1), 121-133. http://dx.doi.org/10.1007/s12237-016-0125-x.

DITHMER, L., NIELSEN, U.G., LUNDBERG, D. and REITZEL, K. Influence of dissolved organic carbon on the efficiency of P sequestration by a lanthanum modified clay. Water Research, 2016, 97, 39-46. http://dx.doi.org/10.1016/j.watres.2015.07.003. PMid:26277214.

DOUGLAS, G.B. REMEDIATION MATERIAL AND REMEDIATION PROCESS FOR SEDIMENTS. United States. Patent, nº US 6,350,383 B1.2002.

DOUGLAS, G.B., HAMILTON, D.P., ROBB, M.S., PAN, G., SPEARS, B.M. and LURLING, M. Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems. Aquatic Ecology, 2016, 50(3), 385-405. http://dx.doi.org/10.1007/s10452-016-9575-2.

DRAKE, J.C. and HEANEY, S.I. Occurrence of phosphorus and its potential remohilization in the littoral sediments of a productive English lake. Freshwater Biology, 1987, 17(3), 513-523. http://dx.doi.org/10.1111/j.1365-2427.1987.tb01072.x.

DUNNE, K.S., HOLDEN, N.M., O'ROURKE, S.M., FENELON, A. and DALY, K. Prediction of phosphorus sorption indices and isotherm parameters in agricultural soils using mid-infrared spectroscopy. Geoderma, 2020, 358. https://doi.org/10.1016/j.geoderma.2019.113981.

ECKERT, W., NISHRI, A. and PARPAROVA, R. Factors regulating the flux of phosphate at the sediment-water interface of a subtropical calcareous lake: a simulation study with intact 30 sediment cores. Water, Air, and Soil Pollution, 1997, 99(1-4), 401-409. http://dx.doi.org/10.1007/BF02406880.

EL BOURAIE, M. and MASOUD, A.A. Adsorption of phosphate ions from aqueous solution by modified bentonite with magnesium hydroxide Mg(OH)2. Applied Clay Science, 2017, 140, 157-164. http://dx.doi.org/10.1016/j.clay.2017.01.021.

ELSERGANY, M. and SHANBLEH, A. Exploratory study to assess the use of lanthanum-modified chitosan as a potential phosphorous adsorbent. Desalination and Water Treatment, 2018, 127, 171-177. http://dx.doi.org/10.5004/dwt.2018.23122.

ERIKSSON, A.K., HESTERBERG, D., KLYSUBUN, W. and GUSTAFSSON, J.P. Phosphorus dynamics in Swedish agricultural soils as influenced by fertilization and mineralogical properties: insights gained from batch experiments and XANES spectroscopy. The Science of the Total Environment, 2016, 566-567(1), 1410-1419. http://dx.doi.org/10.1016/j.scitotenv.2016.05.225. PMid:27312272.

FALCÃO, C.J.L.M., DUARTE, S.M.A. and VELOSO, A.S. Estimating potential soil sheet Erosion in a Brazilian semiarid county using USLE, GIS, and remote sensing data. Environmental Monitoring and Assessment, 2019, 192(1), 47. http://dx.doi.org/10.1007/s10661-019-7955-5. PMid:31844993.

FANG, H., CUI, Z., HE, G., HUANG, L. and CHEN, M. Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology. The Science of the Total Environment, 2017, 605-606(1), 357-367. http://dx.doi.org/10.1016/j.scitotenv.2017.05.133. PMid:28668747.

FARIAS, D.R., OLIVEIRA, F.H.T., SANTOS, D., ARRUDA, J.A., HOFFMANN, R.B. and NOVAIS, R.F. Fósforo em solos representativos do estado da paraíba.: I - Isotermas de adsorção e medidas do fator capacidade de fósforo. Revista Brasileira de Ciência do Solo, 2009, 33(3), 623-632. http://dx.doi.org/10.1590/S0100-06832009000300015.

FEBRIANTO, J., KOSASIH, A.N., SUNARSO, J., JU, Y.H., INDRASWATI, N. and ISMADJI, S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of Hazardous Materials, 2009, 162(2-3), 616-645. http://dx.doi.org/10.1016/j.jhazmat.2008.06.042. PMid:18656309.

FIGUEIREDO, A.V. and BECKER, V. Influence of extreme hydrological events in the quality of water reservoirs in the semi-arid tropical region. Revista Brasileira de Recursos Hídricos, 2018, 23, 1-8. http://dx.doi.org/10.1590/2318-0331.231820180088.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS – FAO. World reference base for soil resources 2014: International soil classification systems for naming soils and creating legends for soil maps. Rome: FAO, 2015. World Soil Resources Reports.

GAO, Y., CORNWELL, J.C., STOECKER, D.K. and OWENS, M.S. Effects of cyanobacterial-driven pH increases on sediment nutrient fluxes and coupled nitrification-denitrification in a shallow fresh water estuary. Biogeosciences Discussions, 2012, 9, 1161-1198.

HADGU, F. Study of Phosphorus adsorption and its relationship with soil properties, analyzed with Langmuir and Freundlich models. Agriculture. Forestry and Fisheries, 2014, 3(1), 40. http://dx.doi.org/10.11648/j.aff.20140301.18.

HAGHSERESHT, F., WANG, S. and DO, D.D. A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Applied Clay Science, 2009, 46(4), 369-375. http://dx.doi.org/10.1016/j.clay.2009.09.009.

HE, J. and CHEN, J.P. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresource Technology, 2014, 160, 67-78. http://dx.doi.org/10.1016/j.biortech.2014.01.068. PMid:24630371.

HILT, S., GROSS, E.M., HUPFER, M., MORSCHEID, H., MÄHLMANN, J., MELZER, A., POLTZ, J., SANDROCK, S., SCHARF, E.M., SCHNEIDER, S. and VAN DE WEYER, K. Restoration of submerged vegetation in shallow eutrophic lakes: a guideline and state of the art in Germany. Limnology, 2006, 36(1), 155-171. http://dx.doi.org/10.1016/j.limno.2006.06.001.

KASPRZYK, M. and GAJEWSKA, M. Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P. The Science of the Total Environment, 2019, 650(Pt 1), 249-256. http://dx.doi.org/10.1016/j.scitotenv.2018.09.034. PMid:30199670.

KENG, J.C.W. and UEHARA, G. Chemistry, mineralogy and taxonomy of oxisols and ultisols. Proceedings, Soil and Crop Science Society of Florida, 1974, 33, 119-126.

KIM, L.H., CHOI, E. and STENSTROM, M.K. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere, 2003, 50(1), 53-61. http://dx.doi.org/10.1016/S0045-6535(02)00310-7. PMid:12656229.

KOZERSKI, H.P. and KLEEBERG, A. The sediments and benthic-pelagic exchange in the shallow lake Muggelsee (Berlin, Germany). International Review of Hydrobiology, 1998, 83(1), 77-112. http://dx.doi.org/10.1002/iroh.19980830109.

LAKE, B.A., COOLIDGE, K.M., NORTON, S.A. and AMIRBAHMAN, A. Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes. The Science of the Total Environment, 2007, 373(2-3), 534-541. http://dx.doi.org/10.1016/j.scitotenv.2006.12.021. PMid:17234258.

LE MOAL, M., GASCUEL-ODOUX, C., MÉNESGUEN, A., SOUCHON, Y., ÉTRILLARD, C., LEVAIN, A., MOATAR, F., PANNARD, A., SOUCHU, P., LEFEBVRE, A. and PINAY, G. Eutrophication: a new wine in an old bottle? The Science of the Total Environment, 2019, 651(Pt 1), 1-11. http://dx.doi.org/10.1016/j.scitotenv.2018.09.139. PMid:30223216.

LEENHEER, J.A. and CROUÉ, J.P. Understanding the unknown structures is key to better treatment of drinking water. Environmental Science & Technology, 2003, 37, 18A-26A. http://dx.doi.org/10.1021/es032333c.

LEITE, J.N.C. and BECKER, V. Impacts of drying and reflooding on water quality of a tropical semi-arid reservoir during an extended drought event. Acta Limnologica Brasilienses, 2019, 31, e15. http://dx.doi.org/10.1590/s2179-975x6918.

LUCENA-SILVA, D., MOLOZZI, J., SEVERIANO, J., BECKER, V. and BARBOSA, J.E.L. Removal efficiency of phosphorus, cyanobacteria and cyanotoxins by the “flock & sink” mitigation technique in semi-arid eutrophic waters. Water Research, 2019, 159, 262-273. http://dx.doi.org/10.1016/j.watres.2019.04.057. PMid:31102855.

LÜRLING, M., MACKAY, E., REITZEL, K. and SPEARS, B.M. Editorial: a critical perspective on geo-engineering for eutrophication management in lakes. Water Research, 2016, 97, 1-10. http://dx.doi.org/10.1016/j.watres.2016.03.035. PMid:27039034.

LÜRLING, M. and VAN OOSTERHOUT, F. Controlling eutrophication by combined bloom precipitation and sediment phosphorus inactivation. Water Research, 2013, 47(17), 6527-6537. http://dx.doi.org/10.1016/j.watres.2013.08.019. PMid:24041525.

LÜRLING, M., WAAJEN, G. and VAN OOSTERHOUT, F. Humic substances interfere with phosphate removal by lanthanum modified clay in controlling eutrophication. Water Research, 2014, 54, 78-88. http://dx.doi.org/10.1016/j.watres.2014.01.059. PMid:24565799.

MCKAY, G. Use of adsorbents for the removal of pollutants from wastewater. Boca Raton: CRC Press, 1996.

MEDEIROS, L., MATTOS, A., LÜRLING, M. and BECKER, V. Is the future blue-green or brown? The effects of extreme events on phytoplankton dynamics in a semi-arid man-made lake. Aquatic Ecology, 2015, 49(3), 293-307. http://dx.doi.org/10.1007/s10452-015-9524-5.

MEIS, S., SPEARS, B.M., MABERLY, S.C. and PERKINS, R.G. Assessing the mode of action of Phoslock in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington, UK). Water Research, 2013, 47(13), 4460-4473. http://dx.doi.org/10.1016/j.watres.2013.05.017. PMid:23764596.

MEURER, E.J. Fundamentos de química do solo. 3. ed. Porto Alegre: Evangraf, 2006, cap. 5, pp. 117-162.

MIRANDA, M., NOYMA, N., PACHECO, F.S., MAGALHÃES, L., PINTO, E., SANTOS, S., SOARES, M.F.A., HUSZAR, V.L., LÜRLING, M. and MARINHO, M.M. The efficiency of combined coagulant and ballast to remove harmful cyanobacterial blooms in a tropical shallow system. Harmful Algae, 2017, 65, 27-39. http://dx.doi.org/10.1016/j.hal.2017.04.007. PMid:28526117.

MOHARAMI, S. and JALALI, M. Use of modified clays for removal of phosphorus from aqueous solutions. Environmental Monitoring and Assessment, 2015, 187(10), 639. http://dx.doi.org/10.1007/s10661-015-4854-2. PMid:26400089.

MUCCI, M., MALIAKA, V., NOYMA, N.P., MARINHO, M.M. and LÜRLING, M. Assessment of possible solid-phase phosphate sorbents to mitigate eutrophication: influence of pH and anoxia. The Science of the Total Environment, 2018, 619-620(1), 1431-1440. http://dx.doi.org/10.1016/j.scitotenv.2017.11.198. PMid:29734619.

MURPHY, J. and RILEY, J. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 1962, 27, 31-36. http://dx.doi.org/10.1016/S0003-2670(00)88444-5.

NASCIMENTO, A.R.V.J., CUNHA, G.K.G., DO NASCIMENTO, C.W.A. and DA CUNHA, K.P.V. Assessing soil quality and heavy metal contamination on scheelite mining sites in a tropical semi-arid Setting. Water, Air, and Soil Pollution, 2021, 232(9), 375. http://dx.doi.org/10.1007/s11270-021-05299-6.

NOBRE, R.L.G., CALIMAN, A., CABRAL, C.R., ARAÚJO, F., GUÉRIN, J., DANTAS, F.D.C.C., QUESADO, L.B., VENTICINQUE, E.M., GUARIENTO, R.D., AMADO, A.M., KELLY, P., VANNI, M.J. and CARNEIRO, L.S. Precipitation, landscape properties and land use interactively affect water quality of tropical freshwaters. The Science of the Total Environment, 2020, 716(1), 137044. http://dx.doi.org/10.1016/j.scitotenv.2020.137044. PMid:32059302.

NOYMA, N.P., DE MAGALHÃES, L., MIRANDA, M., MUCCI, M., VAN OOSTERHOUT, F., HUSZAR, V.L.M., MARINHO, M.M., LIMA, E.R.A. and LURLING, M. Coagulant plus ballast technique provides a rapid mitigation of cyanobacterial nuisance. PLoS One, 2017, 12(6), e0178976. http://dx.doi.org/10.1371/journal.pone.0178976. PMid:28598977.

NOYMA, N.P., DE MAGALHÃES, L., FURTADO, L.L., MUCCI, M., VAN OOSTERHOUT, F., HUSZAR, V.L.M., MARINHO, M.M. and LURLING, M. Controlling cyanobacterial blooms through effective fl occulation and sedimentation with combined use of flocculants and phosphorus adsorbing natural soil and modified clay. Water Research, 2016, 97, 26-38. http://dx.doi.org/10.1016/j.watres.2015.11.057. PMid:26706124.

OLIVEIRA, G., FRANCELINO, M.R., ARRUDA, D.M., FERNANDES-FILHO, E.I. and SCHAEFER, C.E.G.R. Climate and soils at the Brazilian semiarid and the forest-Caatinga problem: new insights and implications for conservation. Environmental Research Letters, 2019, 14(10), 104007. http://dx.doi.org/10.1088/1748-9326/ab3d7b.

PAERL, H.W., HAVENS, K.E., XU, H., ZHU, G., MCCARTHY, M.J., NEWELL, S.E., SCOTT, T., HALL, N.S., OTTEN, T.G. and QIN, B. Mitigating eutrophication and toxic cyanobacterial blooms in large lakes: the evolution of a dual nutrient (N and P) reduction paradigma. Hydrobiologia, 2020, 847(21), 4359-4375. http://dx.doi.org/10.1007/s10750-019-04087-y.

PANOSSO, R., COSTA, I.A.S., SOUZA, N.R., ATTAYDE, J.L., CUNHA, S.R.S. and GOMES, F.C.F. Cianobactérias e cianotoxinas em reservatórios ro Estado do Rio Grande do Norte e o potencial controle das florações pela Tilápia do Nilo (Oreochromis niloticus). Oecologia Australis, 2007, 11(3), 433-449.

PINTO, F.A., SOUZA, E.D., PAULINO, H.B., CURI, N. and CARNEIRO, M.A.C. P-sorption and desorption in Savanna Brazilian soils as a support for phosphorus fertilizer management. Ciência e Agrotecnologia, 2013, 37(6), 521-530. http://dx.doi.org/10.1590/S1413-70542013000600005.

RHEINHEIMER, D.S., ANGHINONI, I. and CONTE, E. Sorção de fósforo em função do teor inicial e de sistemas de manejo de solos. Revista Brasileira de Ciência do Solo, 2003, 27(1), 41-49. http://dx.doi.org/10.1590/S0100-06832003000100005.

ROCHA JUNIOR, C.A.N., DA COSTA, M.R.A., MENEZES, R.F., ATTAYDE, J.L. and BECKER, V. Water volume reduction increases eutrophication risk in tropical semi-arid reservoirs. Acta Limnologia Brasilienses, 2018, 30(106). http://dx.doi.org/10.1590/s2179-975x2117.

ROLIM-NETO, F.C., SCHAEFER, C.E.G.R., COSTA, L.M., CORRÊA, M.M., FERNANDES-FILHO, E.I. and IBRAIMO, M.M. Adsorção de fósforo, superfície específica e atributos mineralógicos em solos desenvolvidos de rochas vulcânicas do alto Paranaíba (MG). Revista Brasileira de Ciência do Solo, 2004, 28(6), 953-964. http://dx.doi.org/10.1590/S0100-06832004000600003.

RYBAK, A., MESSYASZ, B. and ŁĘSKA, B. The accumulation of metal (Co, Cr, Cu, Mnand Zn) in freshwater Ulva (Chlorophyta) and its habitat. Ecotoxicology (London, England), 2013, 22(3), 558-573. http://dx.doi.org/10.1007/s10646-013-1048-y. PMid:23400796.

SANTOS, H.G., JACOMINE, P.K.T., DOS ANJOS, L.H.C., OLIVEIRA, V.A., LUMBRERAS, J.F., COELHO, M.R., ALMEIDA, J.A., ARAUJO FILHO, J.C., OLIVEIRA, J.B. and CUNHA, T.J.F. Sistema brasileiro de classificação de solos. Brasília: EMBRAPA, 2018.

SCHINDLER, D.W. The dilemma of controlling cultural eutrophication of lakes. Proceedings. Biological Sciences, 2012, 279(1746), 4322-4333. http://dx.doi.org/10.1098/rspb.2012.1032. PMid:22915669.

SILVA, A.C., TORRADO, P. and ABREU JUNIOR, J. S. Métodos de quantificação da matéria orgânica do solo. R. Un. Alfenas, 1999, 5, 21-26.

SOBRAL, M.F., NASCIMENTO, C.W.A., CUNHA, K.P.V., FERREIRA, H.A., SILVA, A.J. and SILVA, F.B.V. Basic slag and its effects on the concentration of nutrients and heavy metals in sugarcane. Revista Brasileira de Engenharia Agrícola e Ambiental, 2011, 15(8), 867-872. http://dx.doi.org/10.1590/S1415-43662011000800015.

SPOSITO, G. The surface chemistry of soils. New York: Oxford University, 1984, 234 p.

TEIXEIRA, P.C., DONAGEMMA, G.K., FONTANA, A. and TEIXEIRA, W.G. Manual de métodos de análise de solo. Brasília: EMBRAPA, 2017.

TOMBÁCZ, E. and SZEKERES, M. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolyte. Applied Clay Science, 2004, 27(1-2), 75-94. http://dx.doi.org/10.1016/j.clay.2004.01.001.

TOMBÁCZ, E. and SZEKERES, M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Applied Clay Science, 2006, 34(1-4), 105-124. http://dx.doi.org/10.1016/j.clay.2006.05.009.

VIEIRA, M.D.S. Sorção de fósforo em solos do semiárido [Tese de Doutorado em Manejo de Solo e Água]. Mossoró: Universidade Federal Rural do Semi-Árido, 2017.

WANG, Y., DING, S., WANG, D., SUN, Q., LIN, J., SHI, L., CHEN, M. and ZHANG, C. Static layer: A key to immobilization of phosphorus in sediments amended with lanthanum modified bentonite (Phoslock®). Chemical Engineering Journal, 2017, 325(1), 49-58. http://dx.doi.org/10.1016/j.cej.2017.05.039.

WEI, Z., YAN, X., LU, Z. and WU, J. Phosphorus sorption characteristics and related properties in urban soils in southeast China. Catena, 2019, 175, 349-355. http://dx.doi.org/10.1016/j.catena.2018.12.034.

ZAMPARAS, M., GIANNI, A., STATHI, P., DELIGIANNAKIS, Y. and ZACHARIAS, I. Removal of phosphate from natural waters using innovative modified bentonites. Applied Clay Science, 2012, 62–63, 101-106. http://dx.doi.org/10.1016/j.clay.2012.04.020.

ZHANG, P., LIU, Y., LI, Z., KAN, A.T. and TOMSON, M.B. Sorption and desorption characteristics of anionic surfactants to soil sediments. Chemosphere, 2018, 211, 1183-1192. http://dx.doi.org/10.1016/j.chemosphere.2018.08.051. PMid:30223334.
 


Submitted date:
04/09/2021

Accepted date:
10/28/2021

Publication date:
04/28/2022

626a8f43a9539537396fdae3 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections