Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X2524
Acta Limnologica Brasiliensia
Original Article

Diel dynamics and environmental influences on phytoplankton communities in an Andean lagoon: implications for management and conservation

Dinâmica diária e influencia ambiental sobre a comunidade fitoplanctônica em uma lagoa Andina: implicações para o manejo e conservação

Ivan Edward Biamont-Rojas; Herminio René Alfaro-Tapia

Downloads: 0
Views: 131

Abstract

Aim: Lacustrine environments are unique locations to study temporal fluctuations derived from natural and artificial sources within a hydrographic basin. The objective of this study was to analyze the diel cycle of physicochemical parameters and their influence on the phytoplankton community structure in open waters, as well as, to evaluate the total phosphorus and nitrogen contents in the vicinity of fish tanks in the lagoon, and to identify the phytoplankton assemblage in the water column in a diel cycle in an open water area during the rainy and dry seasons.

Methods: The epilimnion and hypolimnion zones of an open water area were assessed over 24 hours, starting at 10:00 on day one and finishing at 10:00 on day two, obtaining a total of 36 samples (9 samples at 3-hour intervals, in two lake zones, in two seasons). Sampling employed a Van Dorn sampling bottle, and the Morphologically Based Functional Groups (MBFG), Shannon-Weaver and Simpson Indices were employed to describe the identified genera.

Results: Six of the seven parameters monitored registered higher values during the rainy season; only transparency was higher during the dry season. Fifteen genera distributed in nine classes were identified, with richness and diversity being higher in the rainy season.

Conclusions: The MBFG and sinking properties of group and genera has influenced the vertical migration of phytoplankton. The daily cycle method effectively captured the fluctuations in physicochemical and phytoplankton parameters over a 24-hour period in both seasons in Chacas Lagoon.

Keywords

Ceratium; daily cycle; Lake Titicaca basin; MBFG; vertical migration

Resumo

Objetivo: Ambientes lacustres são locações únicas para estudar as flutuações temporais derivadas de fontes naturais e artificiais dentro uma bacia hidrográfica. O objetivo deste estudo é analisar o ciclo diário dos parâmetros físico-químicos e sua influência na estrutura da comunidade fitoplanctônica em águas abertas, bem como, avaliar o conteúdo de fosforo e nitrogênio total nas proximidades de tanques de peixes na lagoa, e identificar a comunidade fitoplanctônica na coluna da água num ciclo diário em águas abertas durante a época de chuva e seca.

Métodos: O epilimnion e hipolimnion em água aberta foi avaliada durante 24 horas, começando às 10:00 do dia um e terminando às 10:00 do dia dois, obtendo 36 amostras no total (9 amostras em um intervalo de três horas em duas zonas lacustres em duas épocas sazonais). A amostragem foi realizada com uma garrafa tipo Van Dorn, e a classificação funcional do fitoplâncton baseada na morfologia (MBFG - Morphologically Based Functional Groups), Indice de Shannon-Weaver e Simpson foram utilizadas para descrever os gêneros identificados.

Resultados: Seis dos sete parâmetros monitorados registraram valores mais altos durante a época de chuva; somente a transparência foi maior durante a época seca. Quinze gêneros distribuídos em nove classes foram identificados, com uma riqueza e diversidade maior na época de chuva.

Conclusões: A classificação MBFG e as propriedades de afundamento para cada grupo e gênero influenciaram a migração vertical do fitoplâncton. O método do ciclo diário capturou efetivamente as flutuações dos parâmetros físico-químicos e do fitoplâncton ao longo de um período de 24 horas em ambas as épocas na Lagoa Chacas.

Palavras-chave

Ceratium; MBFG; ciclo diário; bacia do Lago Titicaca; migração vertical

References

Baxa, M., Musil, M., Kummel, M., Hanzlík, P., Tesařová, B., & Pechar, L., 2021. Dissolved oxygen deficits in a shallow eutrophic aquatic ecosystem (fishpond): sediment oxygen demand and water column respiration alternately drive the oxygen regime. Sci. Total Environ. 766, 142647. PMid:33082047. http://doi.org/10.1016/j.scitotenv.2020.142647.

Bellinger, E.G., & Sigee, D.C., 2010. Freshwater algae: identification and use as bioindicators. Chippenahm: John Wiley & Sons. http://doi.org/10.1002/9780470689554.

Beltrán Farfán, D.F., Palomino Calli, R.P., Moreno Terrazas, E.G., Peralta, C.G., & Montesinos-Tubée, D.B., 2015. Calidad de agua de la bahía interior de Puno, lago Titicaca durante el verano del 2011. Rev. Peru. Biol. 22(3), 335-340. http://doi.org/10.15381/rpb.v22i3.11440.

Biamont-Rojas, I.E., Cardoso-Silva, S., Alves de Lima Ferreira, P., Alfaro-Tapia, R., Figueira, R., & Pompêo, M., 2023a. Chronostratigraphy elucidates environmental changes in lacustrine sedimentation rates and metal accumulation. Environ. Sci. Pollut. Res. Int. 30(28), 72430-72445. PMid:37171726. http://doi.org/10.1007/s11356-023-27521-0.

Biamont-Rojas, I.E., Cardoso-Silva, S., Figueira, R.C.L., Kim, B.S.M., Alfaro-Tapia, R., & Pompêo, M., 2023b. Spatial distribution of arsenic and metals suggest a high ecotoxicological potential in Puno Bay, Lake Titicaca, Peru. Sci. Total Environ. 871, 162051. PMid:36754329. http://doi.org/10.1016/j.scitotenv.2023.162051.

Biamont-Rojas, I.E., Cardoso-Silva, S., Figueira, R., & Pompêo, M., 2024. Estabelecimento de valores referência para metais em sedimentos de reservatórios do Estado de São Paulo. In: Pompêo, M., Cardoso-Silva, S. Figueira, R., & Moschini-Carlos, V., eds. Limnologia de reservatórios: do clássico às novas abordagens. São Paulo: Instituto de Biociências, 74-87.

Brousett-Minaya, M.A., Rondan-Sanabria, G.G., Chirinos-Marroquín, M., & Biamont-Rojas, I., 2021. Impacto de la Minería en Aguas Superficiales de la Región Puno - Perú. Fides Ratio 21, 187-208.

Caixeta, E.S., Meza Bravo, J.V., & Pereira, B.B., 2022. Ecotoxicological assessment of water and sediment river samples to evaluate the environmental risks of anthropogenic contamination. Chemosphere 306, 135595. PMid:35809747. http://doi.org/10.1016/j.chemosphere.2022.135595.

Cardoso-Silva, S., Ferreira, P.A.L., Moschini-Carlos, V., Figueira, R.C.L., & Pompêo, M., 2016. Temporal and spatial accumulation of heavy metals in the sediments at Paiva Castro Reservoir (São Paulo, Brazil). Environ. Earth Sci. 75(1), 1-16. http://doi.org/10.1007/s12665-015-4828-2.

Carneiro, L., Ostroski, A., & Mercuri, E.G.F., 2020. Trophic state index for heavily impacted watersheds: modeling the influence of diffuse pollution in water bodies. Hydrol. Sci. J. 65(15), 2548-2560. http://doi.org/10.1080/02626667.2020.1828588.

Cartuche, A., Guan, Z., Ibelings, B.W., & Venail, P., 2019. Phytoplankton diversity relates negatively with productivity in tropical high-altitude lakes from Southern Ecuador. Sustainability (Basel) 11(19), 5235. http://doi.org/10.3390/su11195235.

Carty, S., 2003. Dinoflagellates. In: Wehr, J.D., & Sheath, R.G., eds. Freshwater Algae of North America. London: Academic Press, 685-714. http://doi.org/10.1016/B978-012741550-5/50021-0.

Cavalcante, K.P., Cardoso, L. de S., Sussella, R., & Becker, V., 2016. Towards a comprehension of Ceratium (Dinophyceae) invasion in Brazilian freshwaters: autecology of C. furcoides in subtropical reservoirs. Hydrobiologia 771(1), 265-280. http://doi.org/10.1007/s10750-015-2638-x.

Cereja, R., Chainho, P., Brotas, V., Cruz, J.P.C., Sent, G., Rodrigues, M., Carvalho, F., Cabral, S., & Brito, A.C., 2022. Spatial variability of physicochemical parameters and phytoplankton at the Tagus Estuary (Portugal). Sustainability (Basel) 14(20), 13324. http://doi.org/10.3390/su142013324.

Conroy, J.A., Steinberg, D.K., Thibodeau, P.S., & Schofield, O., 2020. Zooplankton diel vertical migration during Antarctic summer. Deep Sea Res. Part I Oceanogr. Res. Pap. 162, 103324. http://doi.org/10.1016/j.dsr.2020.103324.

Cui, S., Yu, T., Zhang, F., Fu, Q., Hough, R., An, L., Gao, S., Zhang, Z., Hu, P., Zhu, Q., & Pei, Z., 2020. Understanding the risks from diffuse pollution on wetland eco-systems: the effectiveness of water quality classification schemes. Ecol. Eng. 155, 105929. http://doi.org/10.1016/j.ecoleng.2020.105929.

Cyronak, T., Takeshita, Y., Courtney, T.A., DeCarlo, E.H., Eyre, B.D., Kline, D.I., Martz, T., Page, H., Price, N.N., Smith, J., Stoltenberg, L., Tresguerres, M., & Andersson, A.J., 2020. Diel temperature and pH variability scale with depth across diverse coral reef habitats. Limnol. Oceanogr. Lett. 5(2), 193-203. http://doi.org/10.1002/lol2.10129.

Davis, J.C., 1986. Statistics and data analysis in geology. New York: John Wiley & Sons.

Dias, A.S., & Tucci, A., 2020. Ceratium furcoides (Levander) Langhans: first record in Nova Avanhandava reservoir, Southeast Brazil. Hoehnea 47, e742019. http://doi.org/10.1590/2236-8906-74/2019.

Ding, S., Jiao, L., He, J., Li, L., Liu, W., Liu, Y., Zhu, Y., & Zheng, J., 2022. Biogeochemical dynamics of particulate organic phosphorus and its potential environmental implication in a typical “algae-type” eutrophic lake. Environ. Pollut. 314, 120240. PMid:36152715. http://doi.org/10.1016/j.envpol.2022.120240.

Diovisalvi, N., Bohn, V.Y., Piccolo, M.C., Perillo, G.M.E., Baigún, C., & Zagarese, H.E., 2015. Shallow lakes from the Central Plains of Argentina: an overview and worldwide comparative analysis of their basic limnological features. Hydrobiologia 752(1), 5-20. http://doi.org/10.1007/s10750-014-1946-x.

Drouet, F., Hohn, M.H., Roback, S.S., Skuja, H., Spangler, P.J., Swabey, Y.H., & Whitford, L.A., 1966. Catherwood Foundation Peruvian-Amazon expedition. Monogr. Acad. Nat. Sci. Philadelphia 14, 1-495.

Dufrêne, M., & Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr. 67(3), 345-366. http://doi.org/10.2307/2963459.

Figueredo, C.C., & Giani, A., 2009. Phytoplankton community in the tropical lake of Lagoa Santa (Brazil): conditions favoring a persistent bloom of Cylindrospermopsis raciborskii. Limnologica 39(4), 264-272. http://doi.org/10.1016/j.limno.2009.06.009.

Gervais, F., Berger, S., Schönfelder, I., & Rusche, R., 1999. Basic limnological characteristics of the shallow eutrophic lake Grimnitzsee (Brandenburg, Germany). Limnologica 29(2), 105-119. http://doi.org/10.1016/S0075-9511(99)80058-9.

Guildford, S.J., & Hecky, R.E., 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnol. Oceanogr. 45(6), 1213-1223. http://doi.org/10.4319/lo.2000.45.6.1213.

Guo, F., Jiang, G., Zhao, H., Polk, J., & Liu, S., 2019. Physicochemical parameters and phytoplankton as indicators of the aquatic environment in karstic springs of South China. Sci. Total Environ. 659, 74-83. PMid:30597471. http://doi.org/10.1016/j.scitotenv.2018.12.329.

Hackbart, V., Marques, A., Kida, B., Tolussi, C., Negri, D., Martins, I., Fontana, I., Collucci, M., Brandimarti, A., Moschini-Carlos, V., Cardoso-Silva, S., Meirinho, P., Freire, R., & Pompêo, M., 2015. Avaliação expedita da heterogeneidade espacial horizontal intra e inter reservatórios do sistema cantareira (Represas Jaguari e Jacarei, São Paulo)). In: Pompêo, M., Moschini-Carlos, V., Nishimura, P., Cardoso da Silva, S., & López Doval, J., eds. Ecologia de reservatórios e interfaces. São Paulo: Instituto de Biociências da Universidade de São Paulo, 96-108.

Harper, D.A.T., 1999. Numerical palaeobiology: computer based modelling and analysis of fossils and their distributions. Chichester: John Wiley & Sons, Ltd.

He, H., Wang, Y., Liu, Z., Bao, Q., Wei, Y., Chen, C., & Sun, H., 2022. Lake metabolic processes and their effects on the carbonate weathering CO2 sink: insights from diel variations in the hydrochemistry of a typical karst lake in SW China. Water Res. 222, 118907. PMid:35944408. http://doi.org/10.1016/j.watres.2022.118907.

Hegewald, E., Bai-Jeeji, N., & Hesse, M., 1975. Taxonomische und floristische Studien an Planktonalgen aus ungarischen Gewässern. Algol. Stud. 13, 392-432.

Helbling, E.W., Villafañe, V.E., Buma, A.G.J., Andrade, M., & Zaratti, F., 2001. DNA damage and photosynthetic inhibition induced by solar ultraviolet radiation in tropical phytoplankton (Lake Titicaca, Bolivia). Eur. J. Phycol. 36(2), 157-166. http://doi.org/10.1080/09670260110001735308.

Iltis, A., & Mourguiart, P., 1992. Higher plants: Distribution and biomass. In: Dejoux, C., & Iltis, A., eds. Lake Titicaca: a synthesis of limnological knowledge. Dordrecht: Kluwer Academic Publishers, 241-253.

Iltis, A., Carmouze, J.-P., & Lemoalle, J., 1992. Physico-chemical properties of the water. In: Dejoux, C., & Iltis, A., eds. Lake Titicaca: a synthesis of limnological knowledge. Dordrecht: Kluwer Academic Publishers, 89-97. http://doi.org/10.1007/978-94-011-2406-5

Khan, I., Zakwan, M., Pulikkal, A.K., & Lalthazula, R., 2022. Impact of unplanned urbanization on surface water quality of the twin cities of Telangana state, India. Mar. Pollut. Bull. 185, 114324. http://doi.org/10.1016/j.marpolbul.2022.114324.

Kim, Y., Youn, S.-H., Oh, H.J., Kang, J.J., Lee, J.H., Lee, D., Kim, K., Jang, H.K., Lee, J., & Lee, S.H., 2020. Spatiotemporal variation in phytoplankton community driven by environmental factors in the Northern East China Sea. Water 12(10), 2695. http://doi.org/10.3390/w12102695.

Kolzau, S., Wiedner, C., Rücker, J., Köhler, J., Köhler, A., & Dolman, A. M., 2014. Seasonal Patterns of Nitrogen and Phosphorus Limitation in Four German Lakes and the Predictability of Limitation Status from Ambient Nutrient Concentrations. PLOS ONE 9(4), e96065. http://doi.org/10.1371/journal.pone.0096065

Komárková, J., Montoya, H., & Komárek, J., 2016. Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop? Hydrobiologia 764(1), 249-258. http://doi.org/10.1007/s10750-015-2298-x.

Kruk, C., Huszar, V.L.M., Peeters, E.T.H.M., Bonilla, S., Costa, L., Lürling, M., Reynolds, C.S., & Scheffer, M., 2010. A morphological classification capturing functional variation in phytoplankton. Freshw. Biol. 55(3), 614-627. http://doi.org/10.1111/j.1365-2427.2009.02298.x.

Kumar, R., Kumari, R., Prasad, C., Tiwari, V., Singh, N., Mohapatra, S., Merugu, R., Namtak, S., & Deep, A., 2020. Phytoplankton diversity in relation to physicochemical attributes and water quality of Mandakini River, Garhwal Himalaya. Environ. Monit. Assess. 192(12), 799. PMid:33263156. http://doi.org/10.1007/s10661-020-08768-3.

Kutlu, B., Aydın, R., Danabas, D., & Serdar, O., 2020. Temporal and seasonal variations in phytoplankton community structure in Uzuncayir Dam Lake (Tunceli, Turkey). Environ. Monit. Assess. 192(2), 105. PMid:31915937. http://doi.org/10.1007/s10661-019-8046-3.

Lanza, W.G., Hernández, V.C., Achá, D., & Lazzaro, X., 2024. Responses of phytoplankton and periphyton community structure to an anthropic eutrophication gradient in tropical high-altitude Lake Titicaca. J. Great Lakes Res. 50(2), 102294. http://doi.org/10.1016/j.jglr.2024.102294.

Lazzaro, X., 1980. Etude du phytoplancton de la station de Chua (Lago Pequeño): physicochimie, production primaire, peuplements. Paris: ORSTOM.

Legendre, P., & Legendre, L., 1998. Numerical Ecology (2nd ed). Amsterdam: Elsevier.

Lewandrowski, W., Stevens, J.C., Webber, B.L.L., Dalziell, E., Trudgen, M.S., Bateman, A.M., & Erickson, T.E., 2021. Global change impacts on arid zone ecosystems: seedling establishment processes are threatened by temperature and water stress. Ecol. Evol. 11(12), 8071-8084. PMid:34188872. http://doi.org/10.1002/ece3.7638.

Liberman, M., & Miranda, C., 1985. Contribución al conocimiento del fitoplancton del Lago Titicaca. La Paz: Instituto de Ecología, UMSA.

Loaiza, J.G., Rangel-Peraza, J.G., Sanhouse-García, A.J., Monjardín-Armenta, S.A., Mora-Félix, Z.D., & Bustos-Terrones, Y.A., 2021. Assessment of water quality in a tropical reservoir in mexico: seasonal, spatial and multivariable analysis. Int. J. Environ. Res. Public Health 18(14), 7456. PMid:34299908. http://doi.org/10.3390/ijerph18147456.

MAGRAMA, 2013. Protocolo de análisis y cálculo de métricas de fitoplancton en lago y embalses. Madrid.

Mamani Villalba, B.A., Biamont Rojas, I.E., & Calsin Quinto, B., 2021. Evaluación Ecotoxicológica mediante bioensayo con Daphnia Pulex en sedimentos del Río Suches, Cojata frontera Perú - Bolivia, 2019. Fides Ratio 22, 191-215.

Mariano, M., Huaman, P., Mayta, E., Montoya, H., & Chanco, M., 2010. Contaminación producida por piscicultura intensiva en lagunas andinas de Junín, Perú. Rev. Peru. Biol. 17, 137-140.

Martins, T., Ferreira, K., Rani-Borges, B., Biamont-Rojas, I., Cardoso-Silva, S., Moschini-Carlos, V., & Pompêo, M., 2021. Land use, spatial heterogeneity of organic matter, granulometric fractions and metal complexation in reservoir sediments. Acta Limnol. Bras. 33, e23. http://doi.org/10.1590/s2179-975x3521.

Matamet, F.R.M., & Bonotto, D.M., 2019. Identifying sedimentation processes in the Coata River, Altiplano of the Puno department, Peru, by the 210Pb method. Environ. Earth Sci. 78(22), 641. http://doi.org/10.1007/s12665-019-8662-9.

Mendoza-Carbajal, L., Contreras, D., Baylón, M., Domínguez, A., Valdivia, E., Samanez, Z., Johnson, F., & Salazar-Torres, A., 2022. Especies invasoras de Ceratium Schrank, 1973 (Dinophyceae: Ceratiaceae) en cuerpos de agua continentales de Perú. Rev. Peru. Biol. 29(4), 1-6. http://doi.org/10.15381/rpb.v29i4.23765

Neff, E., MacGregor, J., & Gedan, K.B., 2020. Effects of short-duration and diel-cycling hypoxia on predation of mussels and oysters in two tributaries of the chesapeake bay. Diversity (Basel) 12(3), 87. http://doi.org/10.3390/d12030087.

Padisák, J., Soróczki-Pintér, É., & Rezner, Z., 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton: an experimental study. In Martens, K., ed. Aquatic biodiversity: a celebratory volume in honour of Henri J. Dumont. Netherlands: Springer, 243-257. http://doi.org/10.1007/978-94-007-1084-9_18

Peñuelas, J., & Sardans, J., 2022. The global nitrogen-phosphorus imbalance. Science 375(6578), 266-267. PMid:35050668. http://doi.org/10.1126/science.abl4827.

Pieterse, N.M., Bleuten, W., & Jørgensen, S.E., 2003. Contribution of point sources and diffuse sources to nitrogen and phosphorus loads in lowland river tributaries. J. Hydrol. 271(1), 213-225. http://doi.org/10.1016/S0022-1694(02)00350-5.

Qalmoun, A., Bouzrarf, K., & Belqat, B., 2022. Assessment of the ecological status of the Oum Er-rabie River basin (Central Morocco) through physicochemical, bacteriological parameters and biotic indices. Biologia (Bratisl.) 77(9), 2533-2547. http://doi.org/10.1007/s11756-022-01128-1.

Rai, A.K., 2000. Limnological characteristics of subtropical Lakes Phewa, Begnas, and Rupa in Pokhara Valley, Nepal. Limnology 1(1), 33-46. http://doi.org/10.1007/s102010070027.

Ramírez R.J.J., & Bicudo, C.E.M., 2003. Diurnal, vertical, and among sampling days variation of dissolved O2, CO2, and pH in a shallow, tropical reservoir (Garças reservoir, São Paulo, Brazil)). Acta Limnol. Bras. 15(3), 19-30.

Reynolds, C.S., 1992. Algae. In: Calow, P., & Petts, G., eds. The rivers handbook. Oxford: Wiley-Blackwell, 195-215.

Reynolds, C.S., 1984. The ecology of freshwater phytoplankton. Cambridge: Cambridge University Press.

Richerson, P.J., 1992. The thermal stratification regime in Lake Titicaca. In: Dejoux, C., & Iltis, A., eds. Lake Titicaca: a synthesis of limnological knowledge. Dordrecht: Kluwer Academic Publishers, 120-130. http://doi.org/10.1007/978-94-011-2406-5.

Richerson, P.J., Neale, P.J., Wurtsbaugh, W., René Alfaro, T., & Vincent, W., 1986. Patterns of temporal variation in Lake Titicaca: a high altitude tropical lake. I. Background, physical and chemical processes, and primary production. Hydrobiologia 138(1), 205-220. http://doi.org/10.1007/BF00027241.

Seip, K.L., 1994. Phosphorus and nitrogen limitation of algal biomass across trophic gradients. Aquat. Sci. 56(1), 16-28. http://doi.org/10.1007/BF00877432.

Servicio Nacional de Meteorologia e Hidrologia ­– SENAMHI, 2024. Datos hidrometeorológicos en Puno. Retrieved in 2024, March 18, from https://www.senamhi.gob.pe/main.php?dp=puno&p=estaciones

Silva, F.L., Stefani, M.S., Smith, W., Schiavone, D.C., da Cunha-Santino, M.B., & Bianchini Junior, I., 2020. An applied ecological approach for the assessment of anthropogenic disturbances in urban wetlands and the contributor river. Ecol. Complex. 43, 100852. http://doi.org/10.1016/j.ecocom.2020.100852.

Silva, J.R.I., Montenegro, A.A.A., Farias, C.W.L. de A., Jardim, A., Silva, T.G.F., & Montenegro, S.M.G.L., 2022. Morphometric characterization and land use of the Pajeú river basin in the Brazilian semi-arid region. J. S. Am. Earth Sci. 118, 103939. http://doi.org/10.1016/j.jsames.2022.103939.

Silva, L.N., Medeiros, C.M., Cavalcante, K.P., & Cardoso, L. S., 2019. Invasion and establishment of Ceratium furcoides (Dinophyceae) in an urban lake in Porto Alegre, RS, Brazil. Acta Bot. Bras. 33(4), 654-663. http://doi.org/10.1590/0102-33062018abb0429.

Streble, H., & Krauter, D., 1987. Atlas de los microorganismos de agua dulce. Barcelona: OMEGA.

Sui, Q., Duan, L., Zhang, Y., Zhang, X., Liu, Q., & Zhang, H., 2022. Seasonal water quality changes and the eutrophication of Lake Yilong in Southwest China. Water 14(21), 3385. http://doi.org/10.3390/w14213385.

Sulawesty, F., Yustiawati, & Syawal, M.S., 2020. Phytoplankton distribution in Ranggeh River and its relationship with physicochemical parameters. IOP Conf. Ser. Earth Environ. Sci. 535(1), 012024. http://doi.org/10.1088/1755-1315/535/1/012024.

SUMA-MARKA, 2014. Condiciones fisicoquimicas y bacteriológicas básicas de la laguna Chacas. Puno: Suma Marka ONGD.

Tomasetti, S.J., & Gobler, C.J., 2020. Dissolved oxygen and pH criteria leave fisheries at risk. Science 368(6489), 372-373. PMid:32327589. http://doi.org/10.1126/science.aba4896.

Tong, Y., Huang, Z., Janssen, A.B.G., Wishart, M., He, W., Wang, X., & Zhao, Y., 2022. Influence of social and environmental drivers on nutrient concentrations and ratios in lakes: A comparison between China and Europe. Water Res. 227, 119347. PMid:36399843. http://doi.org/10.1016/j.watres.2022.119347.

Torres-Barrera, N.H., & Grandas-Rincón, I.A., 2017. Estimación de los desperdicios generados por la producción de trucha arcoíris en el lago de Tota, Colombia. Cienc. Tecnol. Agropecu. 18(2), 247-255. http://doi.org/10.21930/rcta.vol18_num2_art:631.

Tsakalakis, I., Follows, M.J., Dutkiewicz, S., Follett, C.L., & Vallino, J.J., 2022. Diel light cycles affect phytoplankton competition in the global ocean. Glob. Ecol. Biogeogr. 31(9), 1838-1849. http://doi.org/10.1111/geb.13562.

U.S. Environmental Protection Agency – U.S. EPA, 1978. Method 365.3: Phosphorous, all forms (colorimetric, ascorbic acid, two reagent). Washington, D.C.

U.S. Environmental Protection Agency – U.S. EPA, 2024. Indicators: nitrogen. Washington, D.C.: National Aquatic Resource Surveys. Retrieved in 2024, March 18, from https://www.epa.gov/national-aquatic-resource-surveys/indicators-nitrogen

United States Geological Survey – USGS, 2024. Phosphorus and water. Retrieved in 2024, March 18, from https://www.usgs.gov/special-topics/water-science-school/science/phosphorus-and-water

Utermöhl, H., 1958. Zur vervollkommer der quantitative phytoplankton methodik. Mitt. Int. Ver. Theor. Angew. Limnol. 9, 1-38.

Van de Vyver, E., Van Wichelen, J., Vanormelingen, P., Van Nieuwenhuyze, W., Daveloose, I., De Jong, R., De Blok, R., Urrutia, R., Tytgat, B., Verleyen, E., & Vyverman, W., 2019. Variation in phytoplankton pigment composition in relation to mixing conditions in temperate South-Central Chilean lakes. Limnologica 79, 125715. http://doi.org/10.1016/j.limno.2019.125715.

Wirtz, K., & Smith, S.L., 2020. Vertical migration by bulk phytoplankton sustains biodiversity and nutrient input to the surface ocean. Sci. Rep. 10(1), 1142. PMid:31980670. http://doi.org/10.1038/s41598-020-57890-2.

Wirtz, K., Smith, S.L., Mathis, M., & Taucher, J., 2022. Vertically migrating phytoplankton fuel high oceanic primary production. Nat. Clim. Chang. 12(8), 750-756. http://doi.org/10.1038/s41558-022-01430-5.

Wu, N., Guo, K., Suren, A.M., & Riis, T., 2023. Lake morphological characteristics and climatic factors affect long-term trends of phytoplankton community in the Rotorua Te Arawa lakes, New Zealand during 23 years observation. Water Res. 229, 119469. PMid:36527869. http://doi.org/10.1016/j.watres.2022.119469.

Wurtsbaugh, W., Vincent, W.F., Alfaro Tapia, R., Vincent, C.L., & Richerson, P.J., 1985. Nutrient limitation of algal growth and nitrogen fixation in a tropical alpine lake, Lake Titicaca (Peru/Bolivia). Freshw. Biol. 15(2), 185-195. http://doi.org/10.1111/j.1365-2427.1985.tb00191.x.

Wurtsbaugh, W., Vincent, W.F., Vincent, C.L., Carney, H.J., Richerson, P.J., & Alfaro Tapia, R., 1992. Nutrients and nutrient limitation of phytoplankton. In: Dejoux, C., & Iltis, A., eds. Lake Titicaca: a synthesis of limnological knowledge. Dordrecht: Kluwer Academic Publishers, 147-156. http://doi.org/10.1007/978-94-011-2406-5

Xiang, L., Huang, X., Zhang, J., Huang, C., Schwalb, A., Zhang, J., Rudaya, N., Sun, M., Mu, X., Li, Y., Luo, D., Muhammad, F., Zhang, W., Wang, W., Wang, T., Zheng, M., Ren, X., Zhang, J., Zhang, E., Gou, X., & Chen, F., 2024. First Pediastrum-temperature transfer function and its application to mid-to-late Holocene reconstruction in Central Asia. Quat. Sci. Rev. 327, 108516. http://doi.org/10.1016/j.quascirev.2024.108516.

Ye, F., Jun, W., Bo-wen, W.U., Jing, H.E., & Xiao-ping, Z., 2023. Seasonal variation characteristics of phytoplankton community in Gucheng Lake and the influential environmental factors. J. Ecol. Rural Environ. 39(8), 1042-1050. http://doi.org/10.19741/j.issn.1673-4831.2022.0174.
 


Submitted date:
03/18/2024

Accepted date:
10/08/2024

Publication date:
11/20/2024

673e3aa3a9539501e813dc53 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections