Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X1418
Acta Limnologica Brasiliensia
Original Article

Day time variations of zooplankton species composition: observations from the wetlands of Assam, India

Variações diurnas da composição das espécies de zooplâncton: observações das áreas úmidas de Assam, Índia

Papia Das; Sulata Kar; Uma Das; Maibam Bimola; Devashish Kar; Gautam Aditya

Downloads: 0
Views: 1196

Abstract

Abstract: : Aim: An attempt to justify the variations in the species composition of zooplankton over the day time period was made using the freshwater lakes of Assam, India, as a model study area.

Methods: The water bodies were sampled using a conical plankton net five times between 6 am and 6 pm in a day during July 2014. Apart from diversity analysis (SHE analysis), discriminant function analysis and a regression tree were built to justify the variations in the zooplankton species composition in the different time periods in a day.

Results: Repeated sampling during day time indicated the presence of 34 zooplankton species with varied composition over the different time periods. The species richness and abundance of Copepoda, Cladocera and Rotifer differed significantly revealed through the ANOVA (for rotifers – F4, 170 = 28.792; for cladocerans – F4, 170 = 16.343; for copepods - F4, 170 = 9.027). Apparently, the rotifer and copepod abundance was prominent during the early (6am) and late time (6pm) periods of a day while the cladoceran abundance was significant during the middle time periods (12 noon to 3pm) of a day. Variations in the relative abundance of the zooplankton species within a day were sufficient to discriminate the time periods significantly. The regression tree indicated the rotifer abundance (node 1), followed by the cladoceran and the copepod abundances (node 2). The nodes representing cladocerans explained 30.86% of the data while the copepod explained 69.14% data as a split from the rotifer groups.

Conclusions: A correspondence of high and low abundances of rotifers and cladocerans was characteristic of the species composition of the zooplankton in the study area. The variations in the species composition suggests that the zooplankton exhibits movements either in horizontal or vertical directions induced by physical and/or biological factors. Further studies may be adopted to elucidate the effects of the predators and environmental variables that shape the community of the zooplankton in shallow tropical lakes.

Keywords

day time variations, zooplankton, Copepoda, Rotifera, Cladocera

Resumo

Resumo: : Objetivo: Um esforço para esclarecer as variações na composição de espécies de zooplâncton ao longo do dia foi feita utilizando lagos de água doce do Nordeste da Índia, em Assam, como área de estudo modelo.

Métodos: Os corpos de água foram amostrados com uma rede de plâncton cônica cinco vezes, entre 6h e 18h, em um dia de julho de 2014. Além da análise de diversidade (análise RHU), uma análise de função discriminante e uma árvore de regressão foram elaboradas para esclarecer as variações na composição das espécies de zooplâncton em diferentes períodos do dia.

Resultados: Amostras repetidas durante o dia indicaram a presença de 34 espécies de zooplâncton, com composição variada, ao longo dos diferentes períodos de tempo. A riqueza e abundância de espécies de copépodes, cladóceros e rotíferos diferiram significativamente, como demonstrado pela ANOVA (para rotíferos - F4, 170 = 28.792; para cladóceros - F4, 170 = 16.343; para copépodes - F4, 170 = 9.027). A abundância de rotíferos e copépodes foi maior nos períodos inicial (6h) e final (18h) do dia, enquanto a abundância de cladóceros foi significativa nos períodos intermediários (12h às 15h). As variações na abundância relativa das espécies de zooplâncton durante o dia foram suficientes para discriminar os períodos de tempo significativamente. A árvore de regressão indicou a abundância de rotíferos (nó 1), seguida pelas abundâncias de cladóceros e copépodes (nó 2). Os nós representando os cladóceros explicaram 30,86% dos dados, enquanto o de copépodos explicou 69,14% dos dados como uma divisão dos grupos de rotíferos.

Conclusões: Uma correspondência de altas e baixas abundâncias de rotíferos e cladóceros foi uma característica da composição de espécies do zooplâncton na área de estudo. As variações na composição das espécies sugerem que o zooplâncton exibe movimentos tanto horizontais como verticais, induzidos por fatores físicos e/ou biológicos. Estudos adicionais são necessários para elucidar os efeitos de predadores e variáveis ambientais que moldam a comunidade do zooplâncton em lagos tropicais rasos.
 

Palavras-chave

variações diurnas, zooplâncton, Copepoda, Rotifera, Cladocera

References

ADDINSOFT.AddinsoftSarl. XLSTAT software, version 9.0.Paris: ADDINSOFT, 2010.

ALTINDAG, A., YIGIT, S. and ERGONOL, M.B. The zooplankton community of Lake Mogan, Turkey.Journal of Freshwater Ecology, 2007, 22(4), 709-711. http://dx.doi.org/10.1080/02705060.2007.9664832.

AMERICAN PUBLIC HEALTH ASSOCIATION – APHA. Standard methods for the examination of water and wastewater. 20th ed. Washington: APHA/AWWA, 2005.

ARCIFA, M.S., BUNIOTO, T.C., PERTICARRARI, A. and MINTO, W.J. Diel horizontal distribution of microcrustaceans and predators throughout a year in a shallow neotropical lake.Brazilian Journal of Biology = RevistaBrasileira de Biologia, 2013, 73(1), 103-114. http://dx.doi.org/10.1590/S1519-69842013000100012. PMid:23644793.

BATTISH, S.K. Freshwater Zooplankton of India.New Delhi: Oxford & IBH Publishing Co. Pvt. Ltd, 1992.

BRAGHIN, L.D.S.M., SIMÕES, N.R. and BONECKER, C.C. Hierarchical effects of local factors on zooplankton species diversity.Inland Waters, 2016, 6(4), 645-654. http://dx.doi.org/10.1080/IW-6.4.919.

BURKS, R.L., LODGE, D.M., JEPPESEN, E. and LAURIDSEN, T.L. Diel horizontal migration of zooplankton: costs and benefits of inhabiting the littoral.Freshwater Biology, 2002, 47(3), 343-365. http://dx.doi.org/10.1046/j.1365-2427.2002.00824.x.

BURNS, C.W. and MITCHELL, S.F. Seasonal succession and vertical distribution of zooplankton in Lake Hayes and Lake Johnson.New Zealand Journal of Marine and Freshwater Research, 1980, 14(2), 189-204. http://dx.doi.org/10.1080/00288330.1980.9515860.

DE’ATH, G. and FABRICIUS, K.E. Classification and regression trees: A powerful yet simple technique for ecological data analysis.Ecology, 2000, 81(11), 3178-3192. http://dx.doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2.

DOULKA, E. and KEHAYIAS, G. Spatial and temporal distribution of zooplankton in Lake Trichonis, Greece.Journal of Natural History, 2008, 42(5-8), 575-595. http://dx.doi.org/10.1080/00222930701835555.

DUTTA, T.K., PAHARI, P.R. and BHATTACHARYA, T. Diel variation and the effect of starvation on Amylase activity of Heliodiaptomus cinctus (Gurney), (Crustacea: Copepoda: Calanoida).Biological Rhythm Research, 2009, 40(3), 249-255. http://dx.doi.org/10.1080/09291010802402196.

EDMONDSON, W.T. Freshwater biology. 2nd ed. New York: John Wiley & Sons, 1959.

EVANS, J.H. Spatial and seasonal succession and vertical distribution of phytoplankton in an African rift valley lake (L. Albert, Uganda, Zaire).Hydrobiologia, 1997, 354(1/3), 1-16. http://dx.doi.org/10.1023/A:1003026415788.

GEORGE, D.G. and HEANEY, S.I. Factors influencing the spatial distribution of phytoplankton in a small productive lake.Journal of Ecology, 1978, 66(1), 133-155. http://dx.doi.org/10.2307/2259185.

GEORGE, M.G. and FERNANDO, C.H. Diurnal migration in three species of rotifers in sunfish lake, Ontario.Limnology and Oceanography, 1970, 15(2), 218-223. http://dx.doi.org/10.4319/lo.1970.15.2.0218.

HANSSON, L.-A., BECARES, E., FERNÁNDEZ-ALÁEZ, M., FERNÁNDEZ-ALÁEZ, C., KAIRESALO, T., ROSA MIRACLE, M., ROMO, S., STEPHEN, D., VAKKILAINEN, K., VAN DE BUND, W., VAN DONK, E., BALAYLA, D. and MOSS, B. Relaxed circadian rhythm in zooplankton along a latitudinal gradient.Oikos, 2007, 116(4), 585-591. http://dx.doi.org/10.1111/j.0030-1299.2007.15754.x.

HAYS, G.C. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations.Hydrobiologia, 2003, 503(1-3), 163-170. http://dx.doi.org/10.1023/B:HYDR.0000008476.23617.b0.

JANA, B.B. State-of-the-art of lakes in India: an overview. Archiv für Hydrobiologie, 1998, 121, 1-89. Supplement.

LAMPERT, W. Vertical distribution of zooplankton: density dependence and evidence and evidence for an ideal free distribution with costs.BMC Biology, 2005, 10, 3-10. PMid:15813974.

LAURIDSEN, T.L. and BUENK, I. Diel changes in the horizontal distribution of zooplankton in two shallow eutrophic lakes.Archiv für Hydrobiologie, 1996, 137, 161-176.

LAURIDSEN, T.L., JEPPESEN, E., SONDERGAARD, M. and LODGE, D.M. Horizontal migration of zooplankton: predator-mediated use of macrophyte habitat. In: E. M.JEPPESEN, M.SONDERGAARD, M.SONDERGAARD&K.CHRISTOFFERSEN, eds. The structuring role of submerged macrophytes in lakes. New York: Springer Verlag, 1997. pp. 233-239. Ecological Studies, vol. 131.

LEGENDRE, P. and LEGENDRE, L. Numerical ecology. 2nd ed. The Netherlands: Elsevier, 1998.

MACK, H.R., CONROY, J.D., BLOCKSOM, K.A., STEIN, R.A. and LUDSIN, S.A. A comparative analysis of zooplankton field collection and sample enumeration methods.Limnology and Oceanography, Methods, 2012, 10(1), 41-53. http://dx.doi.org/10.4319/lom.2012.10.41.

MANLY, B.F.J. Multivariate statistical methods: a primer.London, UK: Chapman and Hall, 1994.

MICHAEL, R.G. and SHARMA, B.K. Indian Cladocera (Crustacea: Branchiopoda: Cladocera).Kolkata: Zoological Survey of India, 1988. Fauna of India and adjacent countries series.

MIRON, M.I.B.D., CASTELLANOS-PÁEZ, M.E., GARZA-MOURIÑO, G., FERRARA-GUERRERO, M.J. and PAGANO, M. Spatiotemporal variations of zooplankton community in a shallow tropical brackish lagoon (Sontecomapan, Veracruz, Mexico).Zoological Studies (Taipei, Taiwan), 2014, 53, 59.

NASH, R.A. A relationship between screen opening and mesh size for standard sieves.Pharmaceutical Development and Technology, 1997, 2(2), 185-186. http://dx.doi.org/10.3109/10837459709022624. PMid:9552445.

PANSERA, M., GRANATA, A., GUGLIELMO, L., MINUTOLI, R., ZAGAMI, G. and BRUGNANO, C. How does mesh mesh-size selection reshape the description of zooplankton community structure in coastal lakes?Estuarine, Coastal and Shelf Science, 2014, 151, 221-235. http://dx.doi.org/10.1016/j.ecss.2014.10.015.

PEPIN, P., JOHNSON, C.L., HARVEY, M., CASAULT, B., CHASSE, J., COLBOURNE, E.B., GALBRAITH, P.S., HEBERT, D., LAZIN, G., MAILLET, G., PLOURDE, S. and STARR, M. A multivariate evaluation of environmental effects on zooplankton community structure in the Western North Atlantic.Progress in Oceanography, 2015, 134, 197-220. http://dx.doi.org/10.1016/j.pocean.2015.01.017.

PERTICARRARI, A., ARCIFA, M.S. and RODRIGUEZ, R.A. Diel vertical migration of cladocerans in a tropical lake.Nauplius, 2003, 11(1), 15-25.

PICAPEDRA, P.H.S., LANSAC-TOHA, F.A. and BIALETZKI, A. Diel vertical migration and spatial overlap between fish larvae and zooplankton in two tropical, Brazil. Brazilian Journal of Biology = RevistaBrasileira de Biologia, 2015, 75(2), 352-361. http://dx.doi.org/10.1590/1519-6984.13213. PMid:26132018.

RABINDRANATH, A., DAASE, M., FALK-PETERSEN, S., WOLD, A., WALLACE, M.I., BERGE, J. and BRIERLEY, A.S. Seasonal and diel vertical migration of zooplankton in the High Arctic during the autumn midnight sun of 2008.Marine Biodiversity, 2010, 41(3), 365-382. http://dx.doi.org/10.1007/s12526-010-0067-7.

RICCARDI, N. Selectivity of plankton nets over mesozooplankton taxa: implications for abundance, biomass and diversity estimation.Journal of Limnology, 2010, 69(2), 287-296. http://dx.doi.org/10.4081/jlimnol.2010.287.

SHARMA, A.S., GUPTA, S. and SINGH, N.R. Zooplankton community of Keibul Lamjao National Park (KLNP) Manipur, India in relation to the physico-chemical variables of the water.Chinese Journal of Oceanology and Limnology, 2017, 35(3), 469-480. http://dx.doi.org/10.1007/s00343-017-5341-0.

SHARMA, B.K. Rotifers (Rotifera: Eurotatoria) from wetlands of Majuli – the largest river island, the Brahmaputra river basin of upper Assam, northeast India.Check List, 2014, 10(2), 292-298. http://dx.doi.org/10.15560/10.2.292.

SHARMA, B.K. Zooplankton communities of Deepor Beel (a Ramsar site), Assam (N. E. India): ecology, richness, and abundance.Tropical Ecology, 2011, 52(3), 293-302.

SHARMA, S. and SHARMA, B.K. Zooplankton diversity in floodplain lakes of Assam. Records of Zoological Survey of India. Kolkata: The Director, Zoological Survey of India, 2008, pp. 1-307. Occasional paper, no 290.

SIEGFRIED, C., AUER, N.A. and EFFLER, S.W. Changes in the zooplankton of Onondaga Lake: Causes of implications.Lake and Reservoir Management, 1996, 12(1), 59-71. http://dx.doi.org/10.1080/07438149609353997.

WOJTAL, A., FRANKIEWICZ, P., IZYDORCZYK, K. and ZALEWSKI, M. Horizontal migration of zooplankton in a littoral zone of the lowland Sulejow Reservoir (Central Poland).Hydrobiologia, 2003, 506-509(1-3), 339-346. http://dx.doi.org/10.1023/B:HYDR.0000008627.55462.e1.

ZAR, J.H. Biostatistical analysis.4th ed. New Delhi, India: Pearson Education Singapore Pte. Ltd, 1999.
 


Submitted date:
02/25/2018

Accepted date:
04/13/2020

Publication date:
11/30/2020

5fc4ebf70e8825e37109966c alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections