Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X10023
Acta Limnologica Brasiliensia
Original Article

Beta diversity of macroinvertebrate assemblages associated with aquatic macrophytes in shallow lakes within a tropical floodplain-dammed river

Diversidade beta de assembleias de macroinvertebrados associados a macrófitas aquáticas em lagos rasos na planície de inundação de um rio tropical represado

Marcos Callisto; Ricardo Solar; Daiana dos Reis Pelegrine; Marden Seabra Linares

Downloads: 0
Views: 148

Abstract

Aims: We assessed the beta diversity of macroinvertebrates associated with aquatic macrophytes in a dam-regulated river floodplain. We tested two hypotheses: (1) macroinvertebrates associated with aquatic macrophytes have higher beta diversity (higher turnover and nestedness components) in the downstream areas closer to the São Francisco River compared to upstream sites; (2) closer lakes share a higher similarity of aquatic macroinvertebrates, disregarding their position relative to the dam.

Methods: We sampled four lakes, including two upstream (L1- natural and L2- regulated by a Small Hydropower Dam - SHD) and two downstream (L3, L4, unregulated) by the SHD.

Results: We corroborated our first hypothesis because we found a higher turnover of macroinvertebrates associated with aquatic macrophytes close to the São Francisco River (L4 downstream), where higher non-native mollusk species richness occurs, while we found higher nestedness upstream and downstream of the SHD (L1, L2, L3). We corroborated our second hypothesis, as closer lakes are more similar than distant lakes. Finally, these differences were consistent between lakes for emergent, floating leaf, and submerged aquatic macrophytes.

Conclusions: Aquatic macrophytes are essential habitats for macroinvertebrates in the Pandeiros River basin, with higher beta diversity in the lake closer to the São Francisco River.

Keywords

flood pulse, decommissioning, small hydropower dam, conservation, habitat

Resumo

Objetivo: O objetivo foi avaliar a diversidade beta de macroinvertebrados associados a macrófitas aquáticas em uma planície de inundação de um rio regulado por hidrelétrica. Testamos duas hipóteses: (1) macroinvertebrados associados a macrófitas aquáticas têm maior diversidade beta (em ambos os componentes turnover e nestedness) em áreas a jusante próximas ao Rio São Francisco se comparadas a áreas a montante, e (2) lagos próximos são mais similares, independente de sua posição em relação à barragem.

Métodos: Foram amostrados quatro lagos, sendo dois a montante (L1- natural e L2- regulado pela Pequena Central Hidrelétrica - PCH) e dois a jusante (L3, L4- não regulados pela PCH).

Resultados: Nossa primeira hipótese foi corroborada porque encontramos maior turnover no lago próximo ao Rio São Francisco (L4 a jusante), onde ocorre maior riqueza de espécies não nativas de moluscos, enquanto aninhamento foi mais importante nos lagos a montante e a jusante da PCH (L1, L2, L3). Nossa segunda hipótese também foi corroborada porque lagos mais próximos são mais similares do que lagos distantes. Finalmente, essas diferenças foram consistentes entre lagos para as macrófitas emergentes, com folhas flutuantes e submersas.

Conclusões: As macrófitas aquáticas são importantes habitats para macroinvertebrados na bacia do Rio Pandeiros, com maior diversidade beta no lago mais próximo ao Rio São Francisco.

Palavras-chave

pulso de inundação, descomissionamento, pequena central hidrelétrica, conservação, habitat

References

Attayde, J.L., Panosso, R., Becker, V., Dias, J.D., & Jeppesen, E., 2022. Preface: advances in the ecology of shallow lakes. Hydrobiologia 849(17-18), 3653-3661. PMid:36065209. http://doi.org/10.1007/s10750-022-04982-x.

Barbosa, F.A.R., Padisák, J., Espíndola, E.L.G., Borics, G., & Rocha, O., 1999. The cascading reservoir continuum concept (CRCC) and its application to the river Tietê-basin, São Paulo State, Brazil. In: Tundisi, J.G., & Strakraba, M., eds. Theoretical Reservoir Ecology and its applications [online]. The Netherlands: International Institute of Ecology. Brazilian Academy of Sciences and Backhuys Publishers, 425-437. Retrieved in 2023, November 23, from http://real.mtak.hu/id/eprint/3269

Barbosa, N.P.U., Silva, F.A., Oliveira, M.D., Neto, M.A.S., Carvalho, M.D., & Cardoso, A.V., 2016. Limnoperna fortunei (Dunker, 1857) (Mollusca, Bivalvia, Mytilidae): first record in the São Francisco River basin, Brazil. Check List 12(1), 1-6. http://doi.org/10.15560/12.1.1846.

Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19(1), 134-143. http://doi.org/10.1111/j.1466-8238.2009.00490.x.

Baselga, A., 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecol. Biogeo. 21(12), 1223-1232. http://doi.org/10.1111/j.1466-8238.2011.00756.x.

Baselga, A., Orme, D., Villeger, S., De Bortoli, J., Leprieur, F., Logez, M., Martinez-Santalla, S., Martin-Devasa, R., Gomez-Rodriguez, C., & Crujeiras, R., 2023. Betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.6 [online]. Retrieved in 2023, November 23, from https://CRAN.R-project.org/package=betapart

Bayley, P.B., 1995. Understanding Large River: floodplain Ecosystems. Bioscience 45(3), 153-158. http://doi.org/10.2307/1312554.

Callisto, M., Goulart, M., Barbosa, F.A.R., & Rocha, O., 2005. Biodiversity assessment of benthic macroinvertebrates along a reservoir cascade in the lower São Francisco River (Northeastern Brazil). Brazil J Biol. 65(2), 229-240. https://doi.org/10.1590/S1519-69842005000200006.

Cortés-Guzmán, D., & Alcocer, J., 2022. Turnover drives high benthic macroinvertebrates’ beta diversity in a tropical karstic lake district. Diversity (Basel) 14(4), 259. http://doi.org/10.3390/d14040259.

Darrigran, G., Agudo-Padr’on, I., Baez, P., Belz, C., Cardoso, F., Carranza, A., Collado, G., Correoso, M., Cuezzo, M.G., Fabres, A., Guti’errez Gregoric, D.E., Letelier, S., Ludwig, S., Mansur, M.C., Pastorino, G., Penchaszadeh, P., Peralta, C., Rebolledo, A., Rumi, A., Santos, S., Thiengo, S., Vidigal, T., & Damborenea, C., 2020. Non-native mollusks throughout South America: emergent patterns in an understudied continent. Biol. Invasions 22(3), 853-871. http://doi.org/10.1007/s10530-019-02178-4.

Dray, S., Bauman, D., Blanchet, G., Borcard, D., Clappe, S., Guénard, G., Jombart, T., Larocque, G., Legendre, P., Madi, N., & Wagner, H.H., 2023. Adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-23 [online]. Retrieved in 2023, November 23, from https://CRAN.R-project.org/package=adespatial

Drummond, G.M., Martins, C.S., & Machado, A.B.M., 2005. Biodiversidade em Minas Gerais. 2. ed. Belo Horizonte: Fundação Biodiversitas.

Epele, L.B., Williams-Subiza, E.A., Bird, M.S., Boissezon, A., Boix, D., Demierre, E., Fair, C.G., García, P.E., Gascón, S., Grech, M.G., Greig, H.S., Jeffries, M., Kneitel, J.M., Loskutova, O., Maltchik, L., Manzo, L.M., Mataloni, G., McLean, K., Mlambo, M.C., Oertli, B., Pires, M.M., Sala, J., Scheibler, E.E., Stenert, C., Wu, H., Wissinger, S.A., & Batzer, D.P., 2024. A global assessment of environmental and climate influences on wetland macroinvertebrate community structure and function. Glob. Change Biol. 30(2), e17173. http://doi.org/10.1111/gcb.17173.

Firmiano, K.R., Castro, D.M.P., Linares, M.S., & Callisto, M., 2021. Functional responses of aquatic invertebrates to anthropogenic stressors in riparian zones of Neotropical savanna streams. Sci. Total Environ. 753, 141865. PMid:32891996. http://doi.org/10.1016/j.scitotenv.2020.141865.

Fonseca, E.M.B., Grossi, W.R., Fiorine, R.A. & Prado, N.J.S., 2008. PCH Pandeiros: uma complexa interface com a gestão ambiental regional. In Anais do VI Simpósio Bras. sobre Pequenas e Médias Centrais Hidrelétricas. Belo Horizonte: Associação Brasileira de Recursos Hídricos, 1-16.

Gutiérrez-Cánovas, C., Millán, A., Velasco, J., Vaughan, I.P., & Ormerod, S.J., 2013. Contrasting effects of natural and anthropogenic stressors on beta diversity in river organisms. Glob. Ecol. Biogeogr. 22(7), 796-805. http://doi.org/10.1111/geb.12060.

Junk, W., Bayley, P.B., & Sparks, R.E., 1989. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 106, 110-127.

Junk, W.J., Piedade, M.T.F., Lourival, R., Wittmann, F., Kandus, P., Lacerda, L.D., Bozelli, R.L., Esteves, F.A., Cunha, C.N., Maltchick, L., Schongart, J., Shaeffer-Novelli, Y., & Agostinho, A.A., 2014. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat Conserv Mar Freshwat. Aquat. Conserv. 24(1), 5-22. http://doi.org/10.1002/aqc.2386.

Krynak, E., Lindo, Z., & Yates, A.G., 2019. Patterns and drivers of stream benthic macroinvertebrate beta diversity in an agricultural landscape. Hydrobiologia 837(1), 61-75. http://doi.org/10.1007/s10750-019-3961-4.

Legendre, P., & Cáceres, M.D., 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16(8), 951-963. PMid:23809147. http://doi.org/10.1111/ele.12141.

Linares, M.S., Callisto, M., & Marques, J.C., 2017. Invasive bivalves increase benthic communities complexity in neotropical reservoirs. Ecol. Indic. 75, 279-285. http://doi.org/10.1016/j.ecolind.2016.12.046.

Linares, M.S., Callisto, M., & Marques, J.C., 2018. Thermodynamic based indicators illustrate how a run-of-river impoundment in neotropical savanna attracts invasive species and alters the benthic macroinvertebrate assemblages’ complexity. Ecol. Indic. 88, 181-189. http://doi.org/10.1016/j.ecolind.2018.01.040.

Linares, M.S., Assis, W., Castro, D.M.P., Solar, R., Leitão, R.P., Hughes, R.M., & Callisto, M., 2019. Small hydropower dam alters the taxonomic composition of benthic macroinvertebrate assemblages in a neotropical river. River Res. Appl. 35(6), 725-735. http://doi.org/10.1002/rra.3442.

Linares, M.S., Callisto, M., & Marques, J.C., 2020a. Assessing biological diversity and thermodynamic indicators in the dam decommissioning process. Ecol. Indic. 109, 105832. http://doi.org/10.1016/j.ecolind.2019.105832.

Linares, M.S., Macedo, D.R., Massara, R.L., & Callisto, M., 2020b. Why are they here? Local variables explain the distribution of invasive mollusk species in neotropical hydropower reservoirs. Ecol. Indic. 117, 106674. http://doi.org/10.1016/j.ecolind.2020.106674.

Linares, M.S., Amaral, P.H.M., & Callisto, M., 2022. Corbicula fluminea (Corbiculidae, Bivalvia) alters the taxonomic and functional structure of benthic assemblages in neotropical hydropower reservoirs. Ecol. Indic. 141, 109115. http://doi.org/10.1016/j.ecolind.2022.109115.

Lopes, L.E., D’Angelo Neto, S., Leite, L.O., Moraes, L.L., & Capurucho, M.J.G., 2010. Birds from Rio Pandeiros, southeastern Brazil: a wetland in an arid ecotone. Rev. Bras. Ornitol. 18, 267-282.

Meerhoff, M., & González-Sagrario, M.A., 2022. Habitat complexity in shallow lakes and ponds: importance, threats, and potential for restoration. Hydrobiologia 849, 3737-3760. http://doi.org/10.1007/s10750-021-04771-y.

Mugnai, R., Nessimian, J.L., & Baptista, D.F., 2010. Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro: para atividades técnicas, de ensino e treinamento em programas de avaliação da qualidade ecológica dos ecossistemas lóticos. Rio de Janeiro: Technical Books Editora.

Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., O'Hara, R., Solymos, P., Stevens, M., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M., Lahti, L., McGlinn, D., Ouellette, M., Ribeiro Cunha, E., Smith, T., Stier, A., Ter Braak, C., & Weedon, J., 2024. vegan: Community Ecology Package. R package version 2.6-6.1. Retrieved in 2023, November 23, from https://CRAN.R-project.org/package=vegan.

Petsch, D.K., Cionek, V.M., Thomaz, S.M., & Santos, N.C.L., 2022. Ecosystem services provided by river-floodplain ecosystems. Hydrobiologia 850(12-13), 2563-2584. http://doi.org/10.1007/s10750-022-04916-7.

Pinto, M.T.C., Yu, L.W., & Barbosa, F.A.R., 2003. Dinâmica mineral na interface terra- água no alto São Francisco. In: Godinho, H.P., & Godinho, A.L., eds. Águas, peixes e pescadores do São Francisco das Minas Gerais. Belo Horizonte: PUC Minas, pp. 51-69.

R Core Team, 2023. A Language and Environment for Statistical Computing [online]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved in 2023, November 23, from https://www.R-project.org/

Santos, C.M., & Eskinazi-Sant’Anna, E.M., 2010. The introduced snail Melanoides tuberculatus (Muller, 1774) (Mollusca: Thiaridae) in aquatic ecosystems of the Brazilian semiarid Northeast (Piranhas-Assu river basin, state of Rio Grande do Norte. Braz. J. Biol. 70(1), 1-7. PMid:20231954. http://doi.org/10.1590/S1519-69842010000100003.

Shimabukuro, E.M., & Henry, R., 2019. Macrophytes in tropical shallow lakes: an important food item to benthic entomofauna or an underused resource? Entomol. Sci. 22(2), 205-215. http://doi.org/10.1111/ens.12351.

Soares, E.A., 2014. Assembleias de peixes associadas aos bancos de macrófitas aquáticas em lagos manejados da Amazônia Central, Amazonas, Brasil. Acta Amazon. 44(1), 143-152. http://doi.org/10.1590/S0044-59672014000100014.

Socolar, J.B., Gilroy, J.J., Kunin, W.E., & Edwards, D.P., 2016. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31(1), 67-80. PMid:26701706. http://doi.org/10.1016/j.tree.2015.11.005.

Thayne, M.W., Kraemer, B.M., Mesman, J.P., Ibelings, B.W., & Adrian, R., 2022. Antecedent lake conditions shape resistance and resilience of a shallow lake ecosystem following extreme wind storms. Limnol. Oceanogr. 67(S1), 101-130. http://doi.org/10.1002/lno.11859.

Thomaz, S.M., 2022. Propagule pressure and environmental filters related to non-native species success in river-floodplain ecosystems. Hydrobiologia 849(17-18), 3679-3704. http://doi.org/10.1007/s10750-021-04624-8.

Thomaz, S.M., Bini, L.M., & Bozelli, R.L., 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579(1), 1-13. http://doi.org/10.1007/s10750-006-0285-y.

Tuomisto, H., 2010. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33(1), 2-22. http://doi.org/10.1111/j.1600-0587.2009.05880.x.

Weir, S.M., & Salice, C.J., 2012. High tolerance to abiotic stressors and invasion success of the slow growing freshwater snail, Melanoides tuberculatus. Biol. Invasions 14(2), 385-394. http://doi.org/10.1007/s10530-011-0084-x.

Zhang, Y., Cheng, L., Li, K., Zhang, L., Cai, Y., Wang, X., & Heino, J., 2019. Nutrient enrichment homogenizes taxonomic and functional diversity of benthic macroinvertebrate assemblages in shallow lakes. Limnol. Oceanogr. 64(3), 1047-1058. http://doi.org/10.1002/lno.11096.
 


Submitted date:
11/21/2023

Accepted date:
07/01/2024

Publication date:
08/19/2024

66c34db4a9539533db362d7b alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections