Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X0523
Acta Limnologica Brasiliensia
Original Article

Length-dry mass regressions for Leptonema (Trichoptera, Hydropsychidae) larvae in a Neotropical headwater stream

Equações de comprimento-massa seca para larvas de Leptonema (Trichoptera, Hydropsychidae) em um riacho de cabeceira Neotropical

Amanda de Melo Coelho; Pedro Henrique Monteiro do Amaral; Marden Seabra Linares; Marcos Callisto

Downloads: 0
Views: 1072

Abstract

Abstract:: Aim: The objectives of this study were to evaluate which allometric measurements of Leptonema larvae are most suitable in order to develop mathematical equations to describe biomass relationships for the population of this taxon in a reference condition headwater stream.

Methods: We measured four body dimensions (body length, interocular distance, horizontal width of cephalic capsule and vertical width of the cephalic capsule) of 65 Leptonema larvae, which were collected in February 2022, in the Taboões spring, Serra do Rola Moça State Park, Minas Gerais, using a Surber sampler. For the determination of allometric measurements, each individual was photographed under a dissecting stereomicroscope (Leica M80) equipped with a digital camera. Each photographed specimen's length was measured using the Motic Image Plus 2.0 software. After measuring the linear body dimension and direct measurement of the biomass, we used these values ​​to calculate the length-mass mathematical equations. To the equations use power models: DM = a Lb, where a/b are constants, DM is the dry mass, L is the linear body dimension.

Results: Among body dimensions of Leptonema larvae, body length showed the greatest range of variation, with values ranging from 4.03 to 25.28 mm, followed by head capsule vertical width (0.51 - 2.69 mm), head capsule horizontal width (0.55 - 2.22 mm) and interocular distance (0.24 - 1.88 mm). Our results show that body length provided the best-fitting equation for estimating biomass (R2 = 0.90). However, we observed a close fit between the other allometric measures, including high coefficients of determination, head capsule horizontal width (R2 = 0.85), interocular distance (R2 = 0.82), head capsule vertical width (R2 = 0.78).

Conclusions: These results will be useful in providing the best allometric measurement and equations to estimate the biomass of Leptonema larvae from the tropics.

Keywords

allometric measures, biomass, body dimensions, invertebrates

Resumo

Resumo:

Objetivo: Os objetivos deste estudo foram avaliar quais medidas alométricas do corpo das larvas de Leptonema são mais adequadas, a fim de desenvolver equações matemáticas para descrever as relações de biomassa para a população deste táxon em riachos de cabeceira.

Métodos: Foram medidas quatro dimensões corporais (comprimento corporal, distância interocular, largura horizontal da cápsula cefálica e largura vertical da cápsula cefálica) de 65 larvas de Leptonema, que foram coletadas no mês de fevereiro de 2022, no manancial Taboões, Parque Estadual da Serra do Rola Moça, Minas Gerais, utilizando amostrador Surber. Para a determinação das medidas alométricas, cada indivíduo foi fotografado em um estereomicroscópio dissecante (Leica M80) equipado com câmera digital. O comprimento de cada espécime foi medido usando o software Motic Image Plus 2.0. Após a medição da dimensão corporal linear e medição direta da biomassa, utilizamos esses valores para calcular equações comprimento-massa. Para às equações, usamos modelos de potência: DM = a Lb, onde a/b são constantes, DM é a massa seca, L é a dimensão corporal linear.

Resultados: O comprimento do corpo apresentou a maior variação, com valores variando de 4,03 a 25,28 mm, seguido pela largura vertical da cápsula cefálica (0,51 - 2,69 mm), largura horizontal da cápsula cefálica (0,55 - 2,22 mm) e distância interocular (0,24 - 1,88 mm). Nossos resultados mostram que o comprimento do corpo forneceu a equação de melhor ajuste para estimar a biomassa (R2 = 0,90). No entanto, observamos um ajuste próximo entre as demais medidas alométricas, retornando altos coeficientes de determinação, largura horizontal da cápsula cefálica (R2 = 0,85), distância interocular (R2 = 0,82), largura vertical da cápsula cefálica (R2= 0,78).

Conclusões: Esses resultados podem ser úteis para fornecer as melhores medidas alométricas e equações para estimar a biomassa de larvas de Leptonema de riachos tropicais.
 

Palavras-chave

medidas alométricas, biomassa, dimensões corporais, invertebrados

References

Balachandran, C.S., Dinakaran, M.D., Chandran, S., & Ramachandra, T.V., 2012. Diversity and distribution of aquatic insects in Aghanashini River of Central Western Ghats, India. In: LAKE 2012: National Conference on Conservation and Management of Wetland Ecosystems. Kottayam, Kerala: School of Environmental Sciences, Mahatma Gandhi University. Retrieved in 2023, Jan 11, from https://wgbis.ces.iisc.ac.in/energy/water/paper/lake2012_aquatic_insects/aquatic_insects.pdf

Baumgärtner, D., & Rothhaupt, K., 2003. Predictive length-dry mass regressions for freshwater invertebrates in a Pre-Alpine Lake Littoral. Int. Rev. Hydrobiol. 88(5), 453-463. http://dx.doi.org/10.1002/iroh.200310632.

Becker, B., Moretti, M.S., & Callisto, M., 2009. Length-dry mass relationships for a typical shredder in Brazilian streams (Trichoptera: calamoceratidae). Aquat. Insects 31(3), 227-234. http://dx.doi.org/10.1080/01650420902787549.

Becker, G., 2005. Life cycle of Agapetus fuscipes (Trichoptera, Glossosomatidae) in a first-order upland stream in central Germany. Limnologica 35(1-2), 52-60. http://dx.doi.org/10.1016/j.limno.2005.01.003.

Benke, A.C., & Huryn, A.D., 2010. Benthic invertebrate production-facilitating answers to ecological riddles in freshwater ecosystems. J. N. Am. Benthol. Soc. 29(1), 264-285. http://dx.doi.org/10.1899/08-075.1.

Benke, A.C., Huryn, A.D., Smock, L.A., & Wallace, J.B., 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. N. Am. Benthol. Soc. 18(3), 308-343. http://dx.doi.org/10.2307/1468447.

Brandão, M., Ferreira, P.B.D., & Araújo, M.G., 1997. Mais uma contribuição para o conhecimento da Cadeia do Espinhaço em Minas Gerais - VI: Serra do Rola-Moça [online]. Retrieved in 2023, Jan 11, from https://www.livrariaepamig.com.br/docs/daphne-v-7-n-4/

Brasil, Conselho Nacional do Meio Ambiente - CONAMA, 2000. Define os critérios de balneabilidade em águas brasileiras (Resolução CONAMA nº 274, de 29 de outubro de 2000). Diário Oficial da União [da] República Federativa do Brasil, Poder Executivo, Brasília, DF. Retrieved in 2023, Jan 11, from http://pnqa.ana.gov.br/Publicacao/Resolu%C3%A7%C3%A3o_Conama_274_Balneabilidade.pdf

Buss, D.F., Baptista, D.F., Nessimian, J.L., & Egler, M., 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518(1-3), 179-188. http://dx.doi.org/10.1023/B:HYDR.0000025067.66126.1c.

Calapez, A.R., Branco, P., Santos, J.M., Ferreira, T., Hein, T., Brito, A.G., & Feio, M.J., 2017. Macroinvertebrate short-term responses to flow variation and oxygen depletion: a mesocosm approach. Sci. Total Environ. 599-600, 1202-1212. PMid:28514838. http://dx.doi.org/10.1016/j.scitotenv.2017.05.056.

Cressa, C., 1999. Dry mass estimates of some tropical aquatic insects. Rev. Biol. Trop. 47, 133-141. https://doi.org/10.15517/rbt.v47i1-2.19062.

Dekanová, V., Venarsky, M.P., & Bunn, S.E., 2022. Length-mass relationships of Australian aquatic invertebrates. Austral Ecol. 47(1), 120-126. http://dx.doi.org/10.1111/aec.13077.

Edwards, F.K.L., Armand, L., Vincent, H.M., & Jones, I.J., 2009. The relationship between length, mass and preservation time for three species of freshwater leeches (Hirudinea). Fundam. Appl. Limnol. 173(4), 321-327. http://dx.doi.org/10.1127/1863-9135/2009/0173-0321.

Genkai-Kato, M., & Miyasaka, H., 2007. Length-weight relationships of four predatory stonefly species in Japan. Limnology 8(2), 171-174. http://dx.doi.org/10.1007/s10201-007-0210-8.

Gholizadeh, M., & Heydarzadeh, M., 2020. Functional feeding groups of macroinvertebrates and their relationship with environmental parameters, case study: in Zarin-Gol river. Iran. J. Fish. Sci. 19, 2532-2543. https://doi.org/10.22092/ijfs.2019.118132.

Gjoni, V., Marle, P., Ibelings, B.W., & Castella, E., 2022. Size-abundance relationships of freshwater macroinvertebrates in two contrasting floodplain channels of Rhone River. Water 14(5), 794. http://dx.doi.org/10.3390/w14050794.

González, J.M., Basaguren, A., & Pozo, J., 2002. Size-mass relationships of stream invertebrates in a northern Spain stream. Hydrobiologia 489(1/3), 131-137. http://dx.doi.org/10.1023/A:1023220501921.

Horta, F., Tavares, L., & Antunes, M., 2006. Assessment of benthic macroinvertebrate habitat suitability in a tropical watershed [online]. Retrieved in 2023, Jan 11, from http://labs.icb.ufmg.br/benthos/index_arquivos/pdfs_pagina/fe2009.pdf

Johnston, T.A., & Cunjak, R.A., 1999. Dry mass-length relationships for benthic insects: a review with new data from Catamaran Brook, New Brunswick, Canada. Freshw. Biol. 41(4), 653-674. http://dx.doi.org/10.1046/j.1365-2427.1999.00400.x.

Linares, M., Callisto, M., & Marques, J.C., 2018. Compliance of secondary production and eco-exergy as indicators of benthic macroinvertebrates assemblages’ response to canopy cover conditions in Neotropical headwater streams. Sci. Total Environ. 613-614, 1543-1550. PMid:28882459. http://dx.doi.org/10.1016/j.scitotenv.2017.08.282.

Linares, M.S., Callisto, M., & Marques, J.C., 2020. Assessing biological diversity and thermodynamic indicators in the dam decommissioning process. Ecol. Indic. 109, 105832. http://dx.doi.org/10.1016/j.ecolind.2019.105832.

Mährlein, M., Pätzig, M., Brauns, M., & Dolman, A.M., 2016. Length-mass relationships for lake macroinvertebrates corrected for back-transformation and preservation effects. Hydrobiologia 768(1), 37-50. http://dx.doi.org/10.1007/s10750-015-2526-4.

Martins, R.T., Melo, A.S., Gonçalves Junior, J.F., & Hamada, N., 2014. Estimation of dry mass of caddisflies Phylloicus elektoros (Trichoptera: Calamoceratidae) in a Central Amazon stream. Zool. 31(4), 337-342. http://dx.doi.org/10.1590/S1984-46702014000400005.

Méthot, G., Hudon, C., Gagnon, P., Pinel-Alloul, B., Armellin, A., & Poirier, A.T., 2012. Macroinvertebrate size-mass relationships: how specific should they be? Freshw. Sci. 31(3), 750-764. http://dx.doi.org/10.1899/11-120.1.

Meyer, S.T., Silva, A., Marco Júnior, P., & Meira Neto, J.A.A., 2004. Composição florística da vegetação arbórea de um trecho de floresta de galeria do Parque Estadual do Rola-Moça na Região Metropolitana de Belo Horizonte, MG, Brasil. Acta Bot. Bras. 18(4), 701-709. http://dx.doi.org/10.1590/S0102-33062004000400001.

Muñoz-Quesada, F., 1999. Género Leptonema (Trichoptera : Hydropsychidae) en Costa Rica. Rev. Biol. Trop. (Online), 47, 959-1006. Retrieved in 2023, Jan 11, from http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77441999000400032&lng=en&tlng=em

Nolte, U., 1990. Chironomid biomass determination from larval shape. Freshw. Biol. 24(3), 443-451. http://dx.doi.org/10.1111/j.1365-2427.1990.tb00723.x.

Pes, A.M.O., 2005. Taxonomia, estrutura e riqueza das assembleias de larvas e pupas de Trichoptera (Insecta), em igarapés na Amazônia central [Tese de doutorado em Ciências Biológicas]. Manaus: Instituto Nacional de Pesquisas da Amazônia. Retrieved in 2023, Jan 11, from https://repositorio.inpa.gov.br/handle/1/12343

R Core Team, 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing [online]. Retrieved in 2023, Jan 11, from http://rproject.org

Reis, D.L.R., & Machado, M.M.M., 2019. Modelagem do potencial geoturístico do parque estadual serra do rola moça - MG. RA’E GA, 46(2), 171-184. http://dx.doi.org/10.5380/raega.v46i2.62314.

Sabo, J.L., Bastow, J.L., & Power, M.E., 2002. Length-mass relationships for adult aquatic and terrestrial invertebrates in a California watershed. J. N. Am. Benthol. Soc. 21(2), 336-343. http://dx.doi.org/10.2307/1468420.

Silva, E.C., Molozzi, J., & Callisto, M., 2010. Size-mass relationships of Melanoides tuberculatus (Thiaridae: Gastropoda) in a eutrophic reservoir. Zool. 27(5), 691-695. http://dx.doi.org/10.1590/S1984-46702010000500004.

Steele, J.H., Collie, J.S., Bisagni, J.J., Gifford, D.J., Fogarty, M.J., Link, J.S., Sullivan, B.K., Sieracki, M.E., Beet, A.R., Mountain, D.G., Durbin, E.G., Palka, D., & Stockhausen, W.T., 2007. Balancing end-to-end budgets of the Georges Bank ecosystem. Prog. Oceanogr. 74(4), 423-448. http://dx.doi.org/10.1016/j.pocean.2007.05.003.

Towers, D.J., Henderson, I.M., & Veltman, C.J., 1994. Predicting dry weight of New Zealand aquatic macroinvertebrates from linear dimensions. N. Z. J. Mar. Freshw. Res. 28(2), 159-166. http://dx.doi.org/10.1080/00288330.1994.9516604.

Wetzel, M.A., Leuchs, H., & Koop, J.H.E., 2005. Preservation effects on wet weight, dry weight, and ash-free dry weight biomass estimates of four common estuarine macro-invertebrates: no difference between ethanol and formalin. Helgol. Mar. Res. 59(3), 206-213. http://dx.doi.org/10.1007/s10152-005-0220-z.
 


Submitted date:
01/18/2023

Accepted date:
03/03/2023

Publication date:
04/10/2023

64340dfaa953954eb71d2a33 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections