Acta Limnologica Brasiliensia
https://app.periodikos.com.br/journal/alb/article/doi/10.1590/S2179-975X0119
Acta Limnologica Brasiliensia
Original Article

Diet of Phylloicus (Trichoptera: Calamoceratidae) caddisfly larvae in forest streams of western Pará, central Brazilian Amazonia

Dieta de larvas de Phylloicus (Trichoptera: Calamoceratidae) em riachos florestais do Oeste do Pará, Amazônia central brasileira

Diego Ramos Pimentel; Sheyla Regina Marques Couceiro; Ana Karina Moreyra Salcedo

Downloads: 0
Views: 1086

Abstract

Abstract:: Aim: The aquatic larvae of the Phylloicus (Trichoptera: Calamoceratidae) caddisflies are typical shredders. However, the trophic classification of Phylloicus has been based on the morphology and behaviour of the larvae. The aim of this study was to investigate the diet of caddisfly larvae Phylloicus in streams.

Methods: In order to provide a more reliable classification of Phylloicus diet, we analyzed the stomach contents of 185 larvae collected, sampled with D-frame entomological net from 18 streams located in the tropical forests of western Pará, Brazil. We compared the stomach contents between the larval stages, seasons (dry and rainy), and substrates (i.e., sand, leaf litter, roots, clay and mixed substrates).

Results: We identified the stomach contents as fine particulate organic matter (FPOM), coarse particulate organic matter (CPOM) and plant tissue. The diet of the Phylloicus larvae was composed basically of FPOM, independent of the larval stage (90,4%), was a higher consumption of FPOM in the dry season and there were no significant differences in food resource between substrates.

Conclusions: These findings indicate that the classification of Phylloicus as a shredder may in fact be based on the processing of leaves for the building of larval cases, rather than the diet, which is in fact detritivorous, enjoying the availability of FPOM in the streams. The great quantity of FPOM consumed by caddisfly larvae Phylloicus highlight the importance of this food resource for macroinvertebrate communities from tropical streams. Therefore, regional studies of feeding habits are needed for accurate classification trophic of Phylloicus.

Keywords

aquatic insects, tropical streams, trophic ecology, substrates

Resumo

Resumo:: Objetivo: Phylloicus (Trichoptera: Calamoceratidae) é um gênero de inseto aquático cujas larvas são consideradas fragmentadoras típicas. Porém, a classificação trófica de Phylloicus tem sido baseada na morfologia e comportamento das larvas. O objetivo deste estudo foi investigar a dieta de larvas de Phylloicus em riachos.

Métodos: Assim, para estabelecer a correta dieta alimentar de Phylloicus analisamos o conteúdo estomacal de 185 larvas coletadas, amostradas com rede entomológica D em 18 riachos de floresta tropical no Oeste do Pará, Brasil. Comparamos o conteúdo estomacal entre os estádios larvais, períodos sazonais (seco e chuvoso) e substratos (e.g. areia, folhiço, raiz, substrato misto).

Resultados: Identificamos os conteúdos estomacais como matéria orgânica particulada fina (MOPF), matéria orgânica particulada grossa (MOPG) e tecido vegetal. Independentemente do estádio larval, a dieta de Phylloicus foi composta basicamente MOPF (90,4%), houve maior consumo de MOPF no período seco e não houve diferenças significativas no consumo de recursos alimentares entre substratos.

Conclusões: Esses resultados indicam que a classificação de Phylloicus como fragmentador deve ser associada somente à quebra de folhas para a construção de abrigos e não a sua dieta, que é detritívora, aproveitando a disponibilidade de MOPF nos riachos. A grande quantidade de FPOM consumida por larvas de Phylloicus destaca a importância desse recurso alimentar para comunidades de macroinvertebrados de riachos tropicais. Portanto, estudos regionais de hábitos alimentares são necessários para uma classificação precisa trófica de Phylloicus.
 

Palavras-chave

insetos aquáticos, riachos tropicais, ecologia trófica, substratos

Referencias

ABELHO, M. From litterfall to breakdown in streams: a review. The Scientific World Journal, 2001, 1, 656-680. http://dx.doi.org/10.1100/tsw.2001.103. PMid:12805769.

AGUIAR, A.C.F., NERES-LIMA, V. and MOULTON, T.P. Relationships of shredders, leaf processing and organic matter along a canopy cover gradient in tropical streams. Journal of Limnology, 2018, 77, 109-120.

ALLAN, J.D. and CASTILLO, M.M. Stream ecology: structure and function of running Waters. Dordrecht: Springer, 2007. http://dx.doi.org/10.1007/978-1-4020-5583-6.

BIASI, C., TONIN, A.M., RESTELLO, R.M. and HEPP, L.U. The colonisation of leaf litter by Chironomidae (Diptera): The influence of chemical quality and exposure duration in a subtropical stream. Limnologica, 2013, 43(6), 427-433. http://dx.doi.org/10.1016/j.limno.2013.01.006.

BOYERO, L., PEARSON, R.G., DUDGEON, D., GRAÇA, M.A., GESSNER, M.O., ALBARIÑO, R.J., FERREIRA, V., YULE, C.M., BOULTON, A.J., ARUNACHALAM, M., CALLISTO, M., CHAUVET, E., RAMÍREZ, A., CHARÁ, J., MORETTI, M.S., GONÇALVES JÚNIOR, J.F., HELSON, J.E., CHARÁ-SERNA, A.M., ENCALADA, A.C., DAVIES, J.N., LAMOTHE, S., CORNEJO, A., LI, A.O., BURIA, L.M., VILLANUEVA, V.D., ZÚÑIGA, M.C. and PRINGLE, C.M. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology, 2011, 92(9), 1839-1848. http://dx.doi.org/10.1890/10-2244.1. PMid:21939080.

BOYERO, L., RAMIREZ, A., DUDGEON, D. and PEARSON, R.G. Are tropical streams really different? Journal of the North American Benthological Society, 2009, 28(2), 397-403. http://dx.doi.org/10.1899/08-146.1.

BRITO, E.F., MOULTON, T.P., SOUZA, M.L. and BUNN, S. Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, southeast Brazil. Austral Ecology, 2006, 31(5), 623-633. http://dx.doi.org/10.1111/j.1442-9993.2006.01610.x.

BUSS, D.F., BAPTISTA, D.F., SILVEIRA, M.P., NESSIMIAN, J.L. and DORVILLÉ, L.F.M. Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil. Hydrobiologia, 2002, 481(1/3), 125-136. http://dx.doi.org/10.1023/A:1021281508709.

CAMACHO, R., BOYERO, L., CORNEJO, A., IBÁÑEZ, A. and PEARSON, R.G. Local variation in shredder distribution can explain their oversight in tropical streams. Biotropica, 2009, 41(5), 625-632. http://dx.doi.org/10.1111/j.1744-7429.2009.00519.x.

CARVALHO JÚNIOR, E.A.R., LIMA, A.P., MAGNUSSON, W.E. and ALBERNAZ, A.L.K.M. Long-term Effect of Forest Fragmentation on the Amazonian Gekkonid Lizards, Coleodactylus amazonicus and Gonatodes humeralis. Austral Ecology, 2008, 33(6), 723-729. http://dx.doi.org/10.1111/j.1442-9993.2008.01840.x.

CARVALHO, E.M. and UIEDA, V.S. Diet of invertebrates sampled in leaf-bags incubated in a tropical headwater stream. Zoologia, 2009, 26(4), 694-704. http://dx.doi.org/10.1590/S1984-46702009000400014.

CASAS, J.J. The effect of diet quality on growth and development of recently hatched larvae of Chironomus gr. plumosus. Limnetica, 1996, 12, 1-8.

CENEVIVA-BASTOS, M. and CASATTI, L. Shading effects on community composition and food web structure of a deforested pasture stream: evidences from a field experiment in Brazil. Limnologica, 2014, 46, 9-21. http://dx.doi.org/10.1016/j.limno.2013.11.005.

CEREZER, C., BIASI, C., COGO, G.B. and SANTOS, S. Avoid predation or take risks in basic activities? Predator–prey relationship in subtropical streams between decapods and caddisflies. Marine and Freshwater Research, 2016, 67(12), 1880. http://dx.doi.org/10.1071/MF15278.

CHARÁ-SERNA, A.M., CHARA, J.D., ZUNIGA, M.D., PEARSON, R.G. and BOYERO, L. Diets of leaf litter-associated invertebrates in three tropical streams. International Journal of Limnology, 2012, 48(2), 139-144. http://dx.doi.org/10.1051/limn/2012013.

CHESHIRE, K., BOYERO, L. and PEARSON, R.G. Food webs in tropical Australian streams: shredders are not scarce. Freshwater Biology, 2005, 50(5), 748-769. http://dx.doi.org/10.1111/j.1365-2427.2005.01355.x.

COBO, F. Maintenance of shredders in the laboratory. In: M.A.S. GRAÇA, F. BÄRLOCHER and M.O. GESSNER, eds. Methods to study litter decomposition: a practical guide. Dordrecht: Springer, 2005, pp. 291-295. http://dx.doi.org/10.1007/1-4020-3466-0_40.

COUCEIRO, S.R.M., HAMADA, N., FORSBERG, B.R. and PADOVESI-FONSECA, C. Trophic structure of macroinvertebrates in Amazonian streams impacted by anthropogenic siltation. Austral Ecology, 2011, 36, 628-637.

CUMMINS, K.W. Combining taxonomy and function in the study of stream macroinvertebrates. Journal of Limnology, 2016, 75(s1), 235-241. http://dx.doi.org/10.4081/jlimnol.2016.1373.

CUMMINS, K.W., MERRITT, R.W. and ANDRADE, P.C.N. The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in southeast Brazil. Studies on Neotropical Fauna and Environment, 2005, 40(1), 69-90. http://dx.doi.org/10.1080/01650520400025720.

CUSHING, C.E. and ALLAN, J.D. Streams: their ecology and life. San Diego: Academic Press, 2001.

DUDGEON, D. The ecology of tropical Asian rivers and streams in relation to biodiversity conservation. Annual Review of Ecology and Systematics, 2000, 31(1), 239-263. http://dx.doi.org/10.1146/annurev.ecolsys.31.1.239.

DUDGEON, D., CHEUNG, F.K.W. and MANTEL, S.K. Food web structure in small streams: do we need different models for the tropics? Journal of the North American Benthological Society, 2010, 29(2), 395-412. http://dx.doi.org/10.1899/09-058.1.

FERREIRA, W.R., LIGEIRO, R., MACEDO, D.R., HUGHES, R.M., KAUFMANN, P.R., OLIVEIRA, L. and CALLISTO, M. Is the diet of a typical shredder related to the physical habitat of headwater streams in the Brazilian Cerrado? Annales de Limnologie-Internatonal Journal of Limnology, 2015, 51(2), 115-122. http://dx.doi.org/10.1051/limn/2015004.

FIDELIS, L., NESSIMIAN, J.L. and HAMADA, N. Distribuição espacial de insetos aquáticos em igarapés de pequena ordem na Amazônia Central. Acta Amazonica, 2008, 38(1), 127-134. http://dx.doi.org/10.1590/S0044-59672008000100014.

FIGUEROA, R., RODRÍGUEZ-BARRIOS, J., OSPINA-TÓRRES, R. and TURIZO-CORREA, R. Grupos funcionales alimentarios de macroinvertebrados acuáticos en el río Gaira, Colombia. Revista de Biología Tropical, 2011, 59, 1537-1552.

GONÇALVES JÚNIOR, J.F., REZENDE, R.S., MARTINS, R.S.N.M. and GREGÓRIO, R.S. Leaf breakdown in an Atlantic Rain Forest. Austral Ecology, 2012, 37(7), 807-815. http://dx.doi.org/10.1111/j.1442-9993.2011.02341.x.

GONÇALVES JÚNIOR, J.F., REZENDE, R.S., GREGÓRIO, R.S. and VALENTIN, G.C. Relationship between dynamics of litterfall and riparian plant species in a tropical stream. Limnologica, 2014, 44, 40-48. http://dx.doi.org/10.1016/j.limno.2013.05.010.

GRAÇA, M.A.S. The Role of Invertebrates on Leaf Litter Decomposition in Streams – a Review. International Review of Hydrobiology, 2001, 86(4-5), 383-393. http://dx.doi.org/10.1002/1522-2632(200107)86:4/5<383::AID-IROH383>3.0.CO;2-D.

GRAÇA, M.A.S., FERREIRA, W.R., FIRMIANO, K., FRANÇA, J. and CALLISTO, M. Macroinvertebrate identity, not diversity, differed across patches differing in substrate particle size and leaf litter packs in low order, tropical Atlantic forest streams. Limnetica, 2015, 34, 29-40.

HENRIQUES-OLIVEIRA, A.L., NESSIMIAN, J.L. and DORVILLÉ, J.F.M. Feeding habits of Chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2003, 63(2), 269-281. http://dx.doi.org/10.1590/S1519-69842003000200012. PMid:14509849.

INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE – ICMBio . A floresta nacional do Tapajós [online]. Santarém: ICMBio, 2019 [viewed 2 Jan. 2019]. Available from: http://www.icmbio.gov.br/flonatapajos/

LANDEIRO, V.L., HAMADA, N., GODOY, B.S. and MELO, A.S. Effects of litter patch area on macroinvertebrate assemblage structure and leaf breakdown in Central Amazonian streams. Hydrobiologia, 2010, 649(1), 355-363. http://dx.doi.org/10.1007/s10750-010-0278-8.

LAU, D.C.P., LEUNG, K.M.Y. and DUDGEON, D. Experimental dietary manipulations for determining the relative importance of allochthonous and autochthonous food resources in tropical streams. Freshwater Biology, 2008, 53, 139-147.

LIMA, L.S. and GONÇALVES, J.F.J. Heterogeneidade temporal e espacial na composição química do detrito foliar. In: Livro de Resumos do II Simpósio Processos Ecológicos, Restauração e Ecovaloração em Zonas Ripárias (AquaRipária). Brasília: AquaRipária, 2015, pp. 12-15.

LISBOA, L.K., SILVA, A.L.L., SIEGLOCH, A.E., GONÇALVES JÚNIOR, J.F. and PETRUCIO, M.M. Temporal dynamics of allochthonous coarse particulate organic matter in a subtropical Atlantic rainforest Brazilian stream. Marine and Freshwater Research, 2015, 66(8), 674-680. http://dx.doi.org/10.1071/MF14068.

MALAS, D. and WALLACE, J.B. Strategies for coexistence in three species of net-spinning caddisflies (Trichoptera) in second-order southern Appalachian streams. Canadian Journal of Zoology, 1977, 55, 1829-1840.

MATHURIAU, C. and CHAUVET, E. Breakdown of leaf litter in a neotropical stream. Journal of the North American Benthological Society, 2002, 21(3), 384-396. http://dx.doi.org/10.2307/1468477.

MERRITT, R.W. and CUMMINS, K.W. An introduction to the aquatic insects of North America. Dubuque: Kendall Hunt Publishing, 1996.

MERRITT, R.W., CUMMINS, K.W. and BERG, M.B., eds. An introduction to the aquatic insects of America. Iowa: Kendall Hunt Publishing, 2008.

MERRITT, R.W., CUMMINS, K.W. and CAMPBELL, E.Y. Uma abordagem funcional para a caracterização de riachos brasileiros. In: N. HAMADA, J.L. NESSIMIAN and R.B. QUERINO, eds. Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. Manaus: INPA, 2014, pp. 69-88.

MESA, L.M., REYNAGA, M.C., CORREA, M.V. and SIROMBRA, M.G. Effects of anthropogenic impacts on benthic macroinvertebrates assemblages in subtropical mountain streams. Série Zoologia, 2013, 103(4), 342-349. http://dx.doi.org/10.1590/S0073-47212013000400002.

MIHUC, T.B. and MIHUC, J.R. Trophic ecology of five shredders in a Rocky Mountain stream. Journal of Freshwater Ecology, 1995, 10(3), 209-216. http://dx.doi.org/10.1080/02705060.1995.9663440.

MINSHALL, G.W. Aquatic insect-substratum relationships. In: D.M. RESH and V.H. ROSEMBERG, eds. The ecology of aquatic insects. New York: Praeger Scientific, 1984, pp. 358-400.

MOTTA, R.L. and UIEDA, V.S. Diet and trophic groups of an aquatic insect community in a tropical stream. Brazilian Journal of Biology = Revista Brasileira de Biologia, 2004, 64(4), 809-817. http://dx.doi.org/10.1590/S1519-69842004000500010. PMid:15744421.

NERES-LIMA, V., BRITO, E.F., KRSULOVIĆ, F.A.M., DETWEILER, A.M., HERSHEY, A.E. and MOULTON, T.P. High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading. International Review of Hydrobiology, 2016, 101(3-4), 132-142. http://dx.doi.org/10.1002/iroh.201601851.

NESSIMIAN, J.L. and CARVALHO, A.L. Ecologia de insetos aquáticos. Rio de Janeiro: Programa de Pós-graduação em Ecologia, Universidade Federal do Rio de Janeiro, 1998.

NESSIMIAN, J.L., SANVERINO, A.M. and OLIVEIRA, A. Relações tróficas de larvas de Chironomidae (Diptera) e sua importância na rede alimentar em um brejo de dunas no Estado do Rio de Janeiro. Revista Brasileira de Entomologia, 1999, 43, 47-53.

PALMER, C., O’KEEFFE, J., PALMER, A., DUNNE, T. and RADLOFF, S. Macroinvertebrate functional feeding groups in the middle and lower reaches of the Buffalo River eastern Cape, South Africa. I. Dietary variability. Freshwater Biology, 1993, 29(3), 441-453. http://dx.doi.org/10.1111/j.1365-2427.1993.tb00778.x.

PARREIRA DE CASTRO, D.M., REIS DE CARVALHO, D., POMPEU, P.S., MOREIRA, M.Z., NARDOTO, G.B. and CALLISTO, M. land use influences niche size and the assimilation of resources by benthic macroinvertebrates in tropical headwater streams. PLoS One, 2016, 11(3), e0150527. http://dx.doi.org/10.1371/journal.pone.0150527. PMid:26934113.

PRÍNCIPE, R.E., GUALDONI, C.M., OBERTO, A.M., RAFFAINI, G.B. and CORIGLIANO, M.C. Spatial-temporal patterns of functional feeding groups in mountain streams of Córdoba, Argentina. Ecología Austral, 2010, 20, 257-268.

ROBINSON, C.T., GESSNER, M.O. and WARD, J.V. Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshwater Biology, 1998, 40(2), 215-228. http://dx.doi.org/10.1046/j.1365-2427.1998.00343.x.

ROSI-MARSHALL, E.J. and WALLACE, B. Invertebrate food webs along a stream resource gradient. Freshwater Biology, 2002, 47(1), 129-141. http://dx.doi.org/10.1046/j.1365-2427.2002.00786.x.

SILVA, E.S., MATHIAS, C.S., LIMA, M.C.F., VEIGA JUNIOR, V.F., RODRIGUES, D.P. and CLEMENT, C.R. Análise físico-química do óleo-resina e variabilidade genética de copaíba na Floresta Nacional do Tapajós. Pesquisa Agropecuária Brasileira, 2012, 47(11), 1621-1628. http://dx.doi.org/10.1590/S0100-204X2012001100009.

SILVA, F.L., PAULETO, G.M., TALAMONI, J.L.B. and RUIZ, S.S. Categorização funcional trófica das comunidades de macroinvertebrados de dois reservatórios na região Centro-Oeste do Estado de São Paulo, Brasil. Acta Scientiarum. Biological Sciences, 2009, 31(1), 73-78. http://dx.doi.org/10.4025/actascibiolsci.v31i1.331.

SILVA, M.L. A educação ambiental e suas contribuições para a sustentabilidade da região amazônica: um estudo sobre as experiências desenvolvidas na Floresta Nacional do Tapajós. Interacções, 2009, 11, 122-152.

SILVEIRA-MANZOTTI, B.N., MANZOTTI, A.R., CENEVIVA-BASTOS, M. and CASATTI, L. Trophic structure of macroinvertebrates in tropical pasture streams. Acta Limnologica Brasiliensia, 2016, 28(0), 1-10. http://dx.doi.org/10.1590/S2179-975X0316.

TAMARIS-TURIZO, C.E., PINILLA-A, G.A., GUZMÁN-SOTO, C.J. and GRANADOS-MARTÍNEZ, C.E. Assigning functional feeding groups to aquatic arthropods in a Neotropical mountain river. Aquatic Biology, 2020, 29, 45-57. http://dx.doi.org/10.3354/ab00724.

TIERNO DE FIGUEROA, J.M., LÓPEZ-RODRÍGUEZ, M.J. and VILLAR-ARGAIZ, M. Spatial and seasonal variability in the trophic role of aquatic insects: an assessment of functional feeding group applicability. Freshwater Biology, 2019, 64(5), 954-966. http://dx.doi.org/10.1111/fwb.13277.

TOMANOVA, S., GOITIA, E. and HELEŠIC, J. Trophic Levels and Functional Feeding Groups of Macroinvertebrates in Neotropical Streams. Hydrobiologia, 2006, 556(1), 251-264. http://dx.doi.org/10.1007/s10750-005-1255-5.

TOMANOVA, S., TEDESCO, P.A., CAMPERO, M., VAN DAMME, P.A., MOYA, P.A.N. and OBERDORFF, T. Longitudinal and altitudinal changes of macro-invertebrate functional feeding groups in neotropical streams: a test of the River Continuum Concept. Fundamental and Applied Limnology, 2007, 170(3), 233-241. http://dx.doi.org/10.1127/1863-9135/2007/0170-0233.

UIEDA, V.S. and MOTTA, R.L. Trophic organization and food web structure of southeastern Brazilian streams: a review. Acta Limnologica Brasiliensia, 2007, 19, 15-30.

UWADIAE, R.E. Macroinvertebrates functional feeding groups as indices of biological assessment in a tropical aquatic ecosystem: implications for ecosystem functions. New York Science Journal, 2010, 3, 6-15.

VASCONCELOS, H.L., LEITE, M.F., VILHENA, J.M.S., LIMA, A.P. and MAGNUSSON, W.E. Ant diversity in an Amazonian savanna: Relationship with vegetation structure, disturbance by fire, and dominant ants. Austral Ecology, 2008, 33(2), 221-231. http://dx.doi.org/10.1111/j.1442-9993.2007.01811.x.

WANTZEN, K.M. and WAGNER, R. Detritus processing by invertebrate shredders: a neotropical – temperate comparison. Journal of the North American Benthological Society, 2006, 25(1), 216-232. http://dx.doi.org/10.1899/0887-3593(2006)25[216:DPBISA]2.0.CO;2.
 


Submitted date:
03/01/2019

Accepted date:
11/05/2020

Publication date:
03/08/2020

5f285f550e88257d140e4938 alb Articles
Links & Downloads

Acta Limnol. Bras. (Online)

Share this page
Page Sections