Algerian Journal of Chemical Engineering
https://app.periodikos.com.br/journal/ajce/article/doi/10.5281/zenodo.4458444
Algerian Journal of Chemical Engineering
Review Article

Magnetic nanoparticles for the Removal of Heavy Metals from industrial wastewater: Review

Z. AKCHICHE, A. B. ABBA, S. SAGGAI

Downloads: 1
Views: 865

Abstract

Heavy metals contamination of industrial wastewater has a severe problem; it has significant adverse effects on human health due to their toxic nature. Nanotechnologies are opening up perspectives in different fields, medicine, environment, and electronics. Nanomaterials have developed to remove heavy metals from polluted water. In this work, we study the technique’s synthesis for magnetic iron oxide particles, their applications for the removal of heavy metal, their efficiency and advantages. The perspective of nanomaterials in heavy metal water treatment and the suggestion for future research direction are discussed.

Keywords

Heavy metals; Wastewater; Magnetic particles; Nanoparticles; Iron Oxide;

References

  1. WWAP/UN-Water. (2018) The United Nations World Water Development Report 2018: Nature-Based Solutions for Water, 7, Place de Fontenoy, 75352 Paris 07 SP, France.
  2. Jinyue, Y., Baohong, H., Jingkang, W., Beiqian, T., Jingtao, B., Na Wang, X. L., Xin, H., (2019) Nanomaterials for the Removal of Heavy Metals from Wastewater. Nomaterials,
  3. Razi, M.A., Al-Gheethi, A., Al-Qaini, M., Yousef, A., (2018) Efficiency of activated carbon from palm kernel shell for treatment of greywater. Arab Journal of Basic and Applied Sciences, 25(3), 103–110.
  4. Chervona, Y., Arita, A., Costa, M. (2012) Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics, 4(7), 619-627.
  5. Kampa, M., Castanas, E. (2008) Human health effects of air pollution. Environ. Pollut.151, 362–367.
  6. Afroze, S., Sen, T.K. (2018) A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut, 229, 225.
  7. Cocârţă, D., Neamţu, S., Deac, A.R. (2016) Carcinogenic risk evaluation for human health risk assessment from soils contaminated with heavy metals. Int. J. Environ. Sci. Technol, 13, 2025–2036.
  8. Ibrahim, F.H. (2017) Phytoremediation in Removing Selected Heavy Metals from Aqueous Solutions. Mesopot. J. Mar. Sci., 32(2), 78 – 87
  9. Verbych, S., Hilal, N., Sorokin, G., Leaper, M. (2004) Ion Exchange Extraction of Heavy Metal Ions from Wastewater. Separat. Sci. Technol, 39, 2031–2040.
  10. Namasivayam, C., Sangeetha, D., (2006) Recycling of agricultural solid waste, coir pith: Removal anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon. J. Hazard. Mater, 135, 449–452.
  11. Sudilovskiy, P.S., Kagramanov, G.G., Trushin, A.M., Kolesnikov, V.A., (2007) Use of membranes for heavy metal cationic wastewater treatment: Flotation and membrane filtration. Clean Technol. Environ. Policy, 9, 189–198.
  12. Tran, T.K., Leu, H.J., Chiu, K.F., Lin, C.Y., (2017) Electrochemical Treatment of Heavy Metal-containing Wastewater with the Removal of COD and Heavy Metal Ions: Electrochemical treatment of heavy metal containing wastewater. J. Chin. Chem. Soc., 64, 493–502.
  13. Mavrov, V., Erwe, T., Blöcher, C. Chmiel, H. (2003) Study of new integrated processes combining adsorption, membrane separation and flotation for heavy metal removal from wastewater. Desalination, 157, 97–104.
  14. Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N.K., Matis, K.A. (2003) Hybrid flotation Membrane filtration process for the removal of heavy metal ions from wastewater. Water Res., 37, 4018–4026.
  15. Belyouci, O. (2017) Le charbon actif magnétique et la bentonite magnétique dans la rétention du Praseodymium et du cadmium. Optimisation des procédés. Thèse doctorat, université Abou Bekr BELKAID Telmecen,
  16. Predescu, A., Matei, E., Predescu, A., Berbecaru, A., (2012) Removal efficiency on magnetite Fe3O4 of some multicomponent systems present in sythetic aqueous solutions. Recent Reasearchs in Communications, Electronics, signal Processing and Automatic Control. Proceedings of the 11th WSEAS International conference.
  17. Magnet, C., (2013) Mécanismes de capture de nanoparticules magnétiques : application à la purification de l’eau. Thèse doctorat, université de Nice-Sophia Antipolis, France.
  18. Can, M.M., Ozcan, S., Guizard, C., Ceylan, A., Firat, T. Effect of milling time on the synthesis of magnetite nanoparticles by wet milling;  Materials Science and Engeneering, 172, 72-75, (2010). 
  19. Gazeau, F., Wilhelm, C., (2012) Nanoparticules et stimuli magnétiques pour l'imagerie médicale et la thérapie, nanomagnetism for medical imaging and therapy, Université de Paris Diderot.
  20. Shahwan, T., Üzüm, Ç. A., Eroğlu, E., (2010) Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions, Applied Clay Science, 47, 257–262.
  21. Miraoui, A., Didi, M.A., Villemin, D.  (2016) Neodymium (III) removal by functionalized magnetic Nanoparticles, Jornal of Radioanalytical and Nuclear Chemistry, 307, 963-971.
  22. Mathieu, G., (2008) Nano-émulsions pour la vectorisation d’agents thérapeutiques ou diagnostiques ; étude de la bio distribution par imagerie de fluorescence in vivo ; Thèse de doctorat Université de Paris centre.
  23. Orlyé, F., (2008) Caractérisation physicochimique par électrophorèse capillaire de nanoparticules magnétiques, anioniques et cationiques : distribution de taille, densité de charge et coefficient de diffusion collectif, Thèse de doctorat, Université de Paris centre.
  24. Andrieux-Jedier, A., (2012) Elaboration de nanoparticules d’argent par réduction de sels métallo-organiques : contrôle de taille, stabilité, organisation et propriétés physiques ; These doctorat universite paris vi - Pierre et Marie CURIE, 
  25. Yaqoob, A. A., Tabassum, K. U. (2020) Role of Nanomaterials in the Treatment of Wastewater, Water, 12, 495;
  26. Yifei, G., Xuejie, Z., Xueqing, S., Dandan, K., Meihua, H. (2019) Nanoadsorbents based on NIPAM and citric acid: removal efficiency of heavy metal ions in different media,: ACS Omega, , 4, 14162−14168
  27. Lu, A.H., Salabas, E.l., Schuth, F. (2007) Reviews: Magnetic nanoparticles: Synthesis, protection, functionalization, and application; Angewandte  Chemie  Internatiobal  Edition.  46, 1222– 1244.
  28. Caroline, D., (2009) Spectroscopie raman et microfluidique: Application à la diffusion Raman exaltée de surface , Thèse de doctorat Université de Bordeaux I.
  29. Cécile, G. (2004) Thèse de doctorat : Colloïdes magnétiques : auto-organisation et applications biologiques , Université de Paris VI,
  30. Laetitia, C.T., (2006) Cinétique de réactions ligand-récepteur en surface - étude fondée sur l’utilisation de colloïdes magnétiques, Thèse de doctorat, Université Paris VI.
  31. Ngomsik, A., (2006) Nouveau concept de séparation à base de nanoparticules magnétiques, Thèse de doctorat Université Paris VI.
  32. Bica, D., Vekas, L., Avdeev, M. V., Marinica, O.,   Socoliuc, V., M. Balasoiu M. et V. M. Garamus, V. M. (2007) Sterically stabilized water based magnetic fluids: Synthesis, structure and properties. Journal of Magnetism and Magnetic Materials, 311, 17-20
  33. Jarlbring, M., Gunneriusson, L., Hussmann, B, Forsling, W. (2005) Surface complex characteristics of synthetic maghemite and hematite in aqueous suspensions. Journal of Colloid and Interface Sciences, 285, 212-217
  34. Ahmed, M.A.; Ali, S.M.; El-Dek, S.I.; Galal, A. (2013) Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Mater. Sci. Eng. B, 178, 744–751.
  35. Dickson, D.; Liu, G.; Cai, Y. (2017) Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates. J. Environ. Manag, 186, 261–267.
  36. Adegoke, H.I.; Amooadekola, F.; Fatoki, O.S.; Ximba, B.J. (2014) Adsorption of Cr (VI) on synthetic hematite (α-Fe2O3) nanoparticles of different morphologies. Korean J. Chem. Eng., 31, 142–154
  37. Shipley; Heather, J.; Engates; Karen, E.; Grover; Valerie, A. (2013) Removal of Pb(II), Cd(II), Cu(II), and Zn(II) by hematite nanoparticles: Effect of sorbent concentration, pH, temperature, and exhaustion. Environ. Sci. Pollut. Res. Int., 20, 1727–1736
  38. Daou, T.J., Greneche, J.M., Lee, S.J., Lee, S., Lefebre, C., Bégin-Colin, S. et Pourroy G. (2010) Spin canting of maghemite studied by NMR and in field mössbauer spectrometry, The Journal of Physical Chemistry C, 114 (19), 8794-8799
  39. Akhtarkhavari, A. (2009) Removal, preconcentration and determination of Mo (VI) from water and wastewater samples using maghemite nanoparticles. Colloids Surf. A, 346, 52–57.
  40. Jing, H., Guohua, C. (2005) Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res, 39, 4528–4536.
  41. Etale, A., Tutu, H., Drake, D.C. (2016) The effect of silica and maghemite nanoparticles on remediation of Cu (II)-, Mn(II)- and U(VI)-contaminated water by Acutodesmus sp. J. Appl. Phycol, 28, 251 260.
  42. Akhbarizadeh, R., Shayestefar, M.R., Darezereshki, E. (2014) Competitive Removal of Metals from Wastewater by Maghemite Nanoparticles: A Comparison between simulated Wastewater and AMD. Mine Water Environ, 33, 89–96.
  43. Giraldo, L., Erto, A., Moreno-Piraján, J.C. (2013) Magnetite nanoparticles for removal of heavy metals from aqueous solutions: Synthesis and characterization. Adsorption, 19, 465–474.
  44. Ngomsik, A., Bee, A., Talbot, D. (2012) Magnetic solid–liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles,  Separation and Purification Technology, 86, 1–8.
  45. Toufic, J.D. (2007) Synthèse et fonctionnalisation de nanoparticules d’oxydes de fer magnétiques ; Thèse de doctorat université Strasbourg I.
  46. Idris, A. , Ismail, N.,  Hassan, N., Misran, E., Ngomsik, A. (2012) Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb  (II)  removal in aqueous solution.  Journal of Industrial and Engineering Chemistry, 18, 1582–1589.
  47. Mokadem, Z., Saidi, S., Agusti, G. (2016) Magnetic nanoadsorbents for metal remediation. Jornal of colloid science and biotechnology, 5, 111-133.
  48. Mokadem, Z., Mekki,  S.,Saidi, S., Agusti, G. (2017) Triazole containing magnetic core-silica shell nanoparticles for Pb2+, Cu2+ and Zn2+ removal, Arabian journalof chemistry, 10, 1039-1051
  49. Muibat, D. Y., Kehinde, S. O., Mohammed, B. A., Yahaya, A. I., Adeola, G. O.(2020) Characterization of cobalt ferrite-supported activated carbon for removal of chromium and lead ions from tannery wastewater via adsorption equilibrium, Water Science and Engineering, 13(3), 202-213.
  50. Huang, Z., Wang, X., Yang, D. (2015) Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes, Water Science and Engineering, 8(3), 226-232.

Submitted date:
09/04/2020

Reviewed date:
11/11/2020

Accepted date:
01/22/2021

Publication date:
01/22/2021

600b42230e8825b0152e620c ajce Articles
Links & Downloads

AJCE

Share this page
Page Sections