OXIGENAÇÃO PÓS-OPERATÓRIA

Exame funcional do Aparelho Respiratório*

DR. LÍCIO MAIA PAVANI **

Indiscutivelmente, um dos problemas que assume papel saliente no pós-operatório é o da oxigenação, notadamente nos pacientes que apresentam deficiência de hematose, de vez que, nos doentes sob anestesia geral, há redução da capacidade ventilatória.

A fim de bem situarmos o problema, convem recordarmos certas noções de fisilogia pulmonar.

Segundo Cournand, (1) as funções que cabem aos pulmões dentro do complexo problema da hematose são:

- 1º Função de ventilação, que compreende o movimento do ar atmosférico entre o meio ambiente e os pulmões, e que exige os seguintes requisitos:
 - a) que o tórax, como continente, seja normal;
- b) que as pleuras e o mediastino sejam normais em sua integridade e em seu funcionamento;
- c) que o conteúdo da caixa torácica seja normal em sua constituição visceral, expansibilidade e elasticidade pulmonares;
- d) que a caixa torácica, com seu conteúdo, funciona graças a um estímulo normal.
- 2º Função de intercâmbio gasoso, mediante a qual o organismo elimina CO2 e capta O2; função que, em última análise, se passa no alvéolo pulmonar, e cujo êxito depende de:
- a) correta e eficiente distribuição e mistura do ar nos alvéolos pulmonares funcionantes;
- b) correta e eficiente distribuição do sangue pelo leito capilar pulmonar;

^(*) Trabalho apresentado ao IV Congresso Brasileiro de Anestesiologia, Pôrto Alegre — Outubro de 1957.

^(**) Endoscopista — Pôrto Alegre, R.G.S.

c) correta e eficiente passagem dos gases intercambiantes, CO2, e O2, através das membranas alvéolo-capilares.

Segundo a Lei de Dalton, um gás difunde segundo sua pressão parcial, independentemente das pressões de outros gases, isto é, comporta-se, em uma mistura gasosa, como se estivesse só, ocupando o mesmo espaço.

Concordamos que o conhecimento fundamental para compreender e interpretar o assunto que expomos é a curva de dissociação da hemoglobina.

No gráfico anexo, nas abcissas, está indicada a pressão parcial do oxigênio de 10 em 10 mms de Hg, e, nas ordenadas, a percentagem de saturação da hemoglobina.

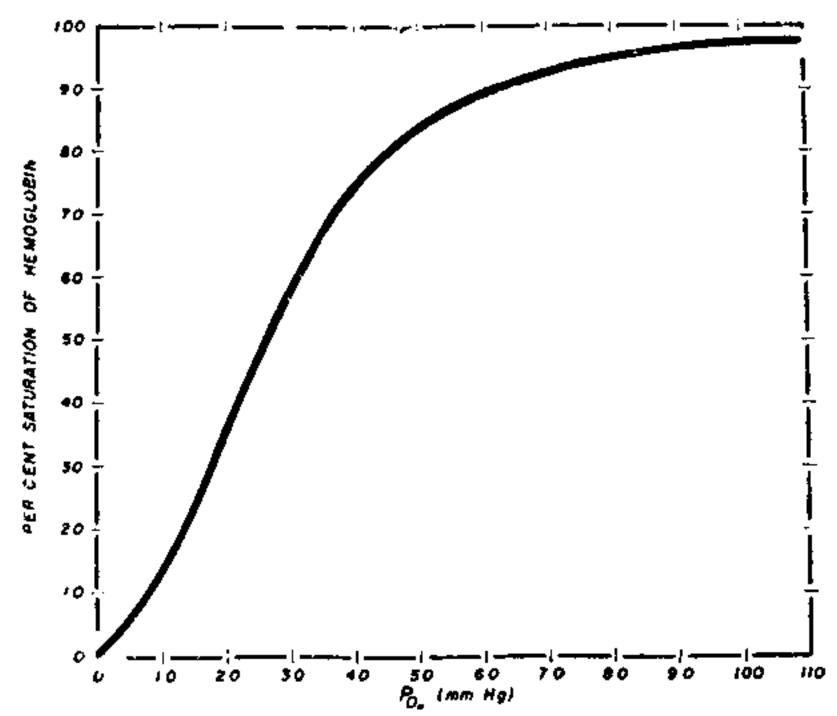


FIG. 3 — Oxygen-hemoglobin dissociation curve. (Comroe, W. A., and Carlsen, E.: The Lung. Chicago, Year Book J. H., Jr., Forster, R. E., II, Dubois, A. B., Briscoe, Publishers, 1955, p. 98)

Vemos que a linha toma a forma de uma hipérbole, e que entre 40 e 50 mm de Hg já há pràticamente 80% de hemoglobina saturada e que a 70 mm é de 90% a saturação. Se recordarmos que a pressão atmosférica é de 760 mm de Hg e que a quantidade de oxigênio existente é de 20,83%, teremos, segundo a Lei de Dalton:

Portanto a pressão parcial do oxigênio no ar atmosférico é de 158 mm de Hg. Logo, se, conferindo a curva de dissociação da hemoglobina, a 90 mm de Hg a saturação é máxima, o

oxigênio existente no ar atmosférico encontra-se em pressão mais do que suficiente para saturar ao máxima a hemoglobina do sangue.

Quer isto dizer que ao indivíduo normal tanto faz respirar em ambiente de ar atmosférico ou de oxigênio puro.

Este conhecimento é absolutamente necessário e nos permite compreender que, se um paciente consome mais oxigênio (acima do previsto como tolerância, é claro) respirando em um ambiente de oxigênio puro do que respirando em ar atmosférico (supondo que tenha o aparelho circulatório normal), há uma deficiência do seu aparelho respiratório deficiência de hematose.

Sem dúvida que a quantidade de oxigênio no ar alveolar não é de 20.83%, mas sim de 15%, havendo CO2 na proporção de 5.5%.

Temos, então a pressão parcial do oxigênio no ar alveolar:

$$\frac{15 \times 760}{100} = 114 \text{ mms de Hg}$$

A pressão parcial do oxigênio no ar alveolar é, assim, de 114 mms de Hg, ainda mais do que suficiente para saturar ao máximo a hemoglobina.

No entanto, o ar alveolar está saturado de vapor d'água, o qual, também, tem sua pressão parcial, que é de 47 mms de Hg. Logo, ao calcularmos, com exatidão a pressão parcial do oxigênio no ar alveolar, temos:

$$760 - 47 = 713$$
 mms de Hg Deduz-se:

$$\frac{15 \times 713}{100} = 106,95 \text{ mms de Hg}$$

Se retornarmos à curva de saturação da hemoglobina, vemos que a pressão parcial do oxigênio no ar alveolar é superior ao necessário para saturar ao máximo fisiológico previsto a hemoglobina.

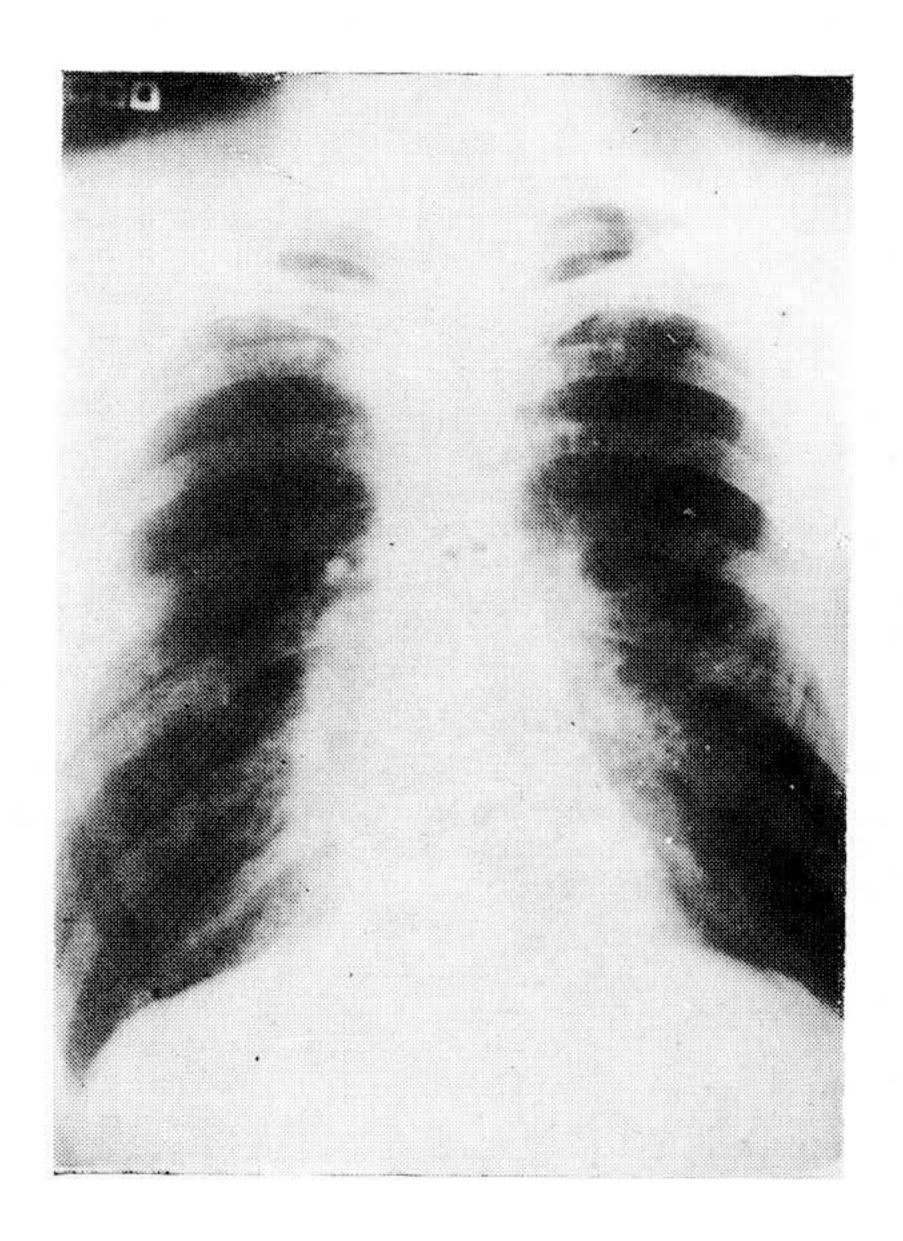
Comroe (3) esquematisa as causas da hipoventilação como se segue:

- 1 DEPRESSÃO DO CENTRO RESPIRATÓRIO por anestesia geral, doses excessivas de morfina ou barbitúricos, trauma cerebral, hipertensão endo-craneana, anoxia prolongada ou isquemia cerebral, concentrações elevadas de CO2 ou eletrocução.
- 2 INTERFERÊNCIA COM A CONDUÇÃO NERVOSA OU A TRANSMISSÃO NEURO-MUSCULAR AOS MÚSCULOS RESPIRATÓRIOS por lesão da medula espinhal, infecções tais como a poliomielite, neurite periférica, bloqueio neuro-muscular

por relaxantes musculares, gases tóxicos para os nervos, miastenia grave, envenenamento por nicotina e botulismo.

- 3 ENFERMIDADES DOS MÚSCULOS RESPIRATÓRIOS.
- 4 LIMITAÇÕES AO MOVIMENTO DO TÓRAX por artrites, esclerodermia, enfisema, deformidade torácica ou elevação do diafragma.
- 5 LIMITAÇÕES AO MOVIMENTO DOS PULMÕES por derrame pleural ou pneumotórax.
 - 6 ENFERMIDADES PULMONARES:
- a) diminuição no tecido pulmonar funcionante provocada por atelectasia, tumor ou pneumonia;
- b) menor distensibilidade do tecido pulmonar como na fibrose ou congestão;
- c) lesões obstrutivas do tracto respiratório superior ou inferior.

As Provas Funcionais Globais do Aparelho Respiratório (3, 4, 5, 6), executadas em ar e em oxigênio puro, em regime de repouso e de esfôrço, nos fornecem vários dados, e entre êles, para efeito de oxigenação pós-operatória, consideramos a frequência, o volume respiratório minuto, o consumo de oxigênio por minuto e o equivalente de ventilação.


Da relação entre o volume respiratório minuto e o consumo de oxigênio, ambos tomados no mesmo minuto, deduzimos o equivalente de ventilação, o qual é a quantidade de ar que deve ser ventilado a fim de que sejam consumidos 100 ml de oxigênio.

Entendemos que os pacientes portadores de insuficiência respiratória, seja compensada — mesmo consumo de O2 tanto em ar como em oxigênio puro, porém com maior ventilação (mais de 1.000 ml) quando em ar, — seja ostensiva — maior consumo de O2 com menor ventilação (menos de 1.000 ml) quando em O2 puro, devem continuar oxigenados até que, expontâneamente, venham a apresentar, no pós-operatório, o mesmo volume respiratório minuto de antes, para que, quando em ar, seja proporcionado o mesmo equivalente necessário à oxigenação do sangue.

Comprendemos que, se no pós-operatório, o paciente com «deficit» respiratório, quando em ar, não conseguir ventilar o necessário para garantir o suprimento mínimo de O2, devemos-lhe proporcionar O2 puro a fim de que, mesmo ventilando menos, seja garantida a sua oxigenação.

Exemplifiquemos:

1º) M. B., masculino, com 37 anos, de profissão vidreiro. Durante 13 anos exerceu sua profissão, sendo nos últimos cinco anos como assoprador de garrafas. Em suas queixas, refere-se a dispnéia de esfôrço intensa e sem remissão, e a tosse produtiva, não havendo em seu passado mórbido causa para justificar esta última. Exames complementares reiteradamente negativos para tuberculose pulmonar e outras pneumopatias de origem infecciosa ou parasitárias.

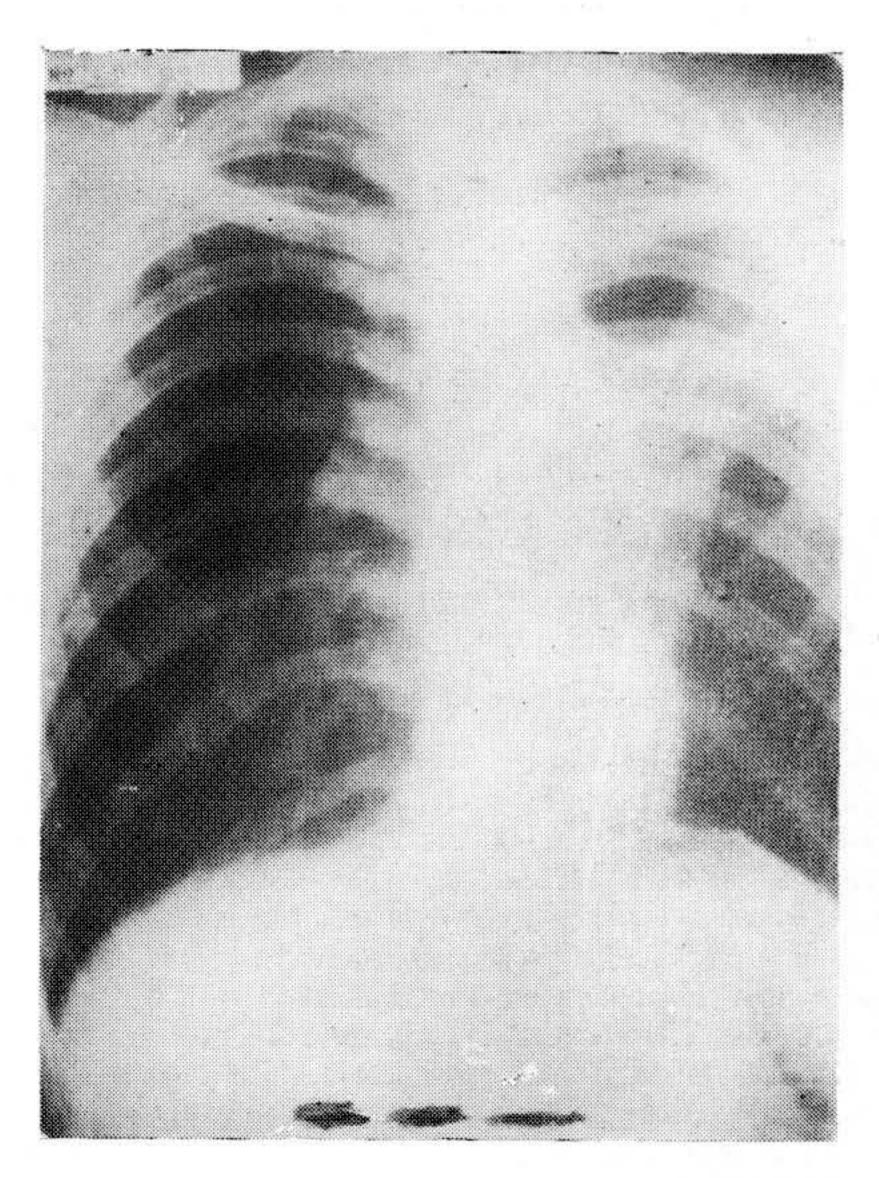
Diagnóstico: Enfisema pulmonar difuso.

Seu Exame Funcional revela:

ESPIROGRAMA

REPOUSO

Frequência	20	movtos./min.	
Apnéia voluntária inspiratória	24	segundos	
Capacidade vital	2.990	ml	
Capacidade vital teórica	4.200	ml	
Volume de ar inspirado	989	ml	
Volume de ar expirado	420	ml	
Consumo de oxigênio em ar por minuto	184	ml	
Consumo de oxigênio em oxigênio por			
minuto	276	ml	
Volume respiratório em ar por minuto	17.135	ml	
Volume respiratório em oxigênio por		_	
minuto	10.580	_	
Máxima capacidade ventilatória	49.588		
Máxima capacidade ventilatória teórica	54.052		
Reservas de ventilação	65		
Equivalente de ventilação	9.312	ml	
PROVA DE ESFÔRÇO, EM EXERCÍCIO MODERADO			
Consumo de oxigênio em ar e trabalho	322	ml	
Consumo de oxigênio em oxigênio e			
trabalho	391	ml	
Volume respiratório em ar e trabalho	38.893	ml	
Volume respiratório em oxigênio e			
trabalho	15.525	ml	


CONCLUSÕES

Apnéia inspiratória muito diminuída: 24 segundos. Capacidade vital regular, com 71% da cifra teórica prevista. Volume respiratório minuto em ar de 17.135 ml, com um consumo de oxigênio de 184 ml, o que proporciona um equivalente de ventilação elevado: 9.312 ml. Máxima capacidade ventilatória muito boa (91% da cifra teórica prevista). Reservas de ventilação pràticamente nulas: 61%. Em repouso, há «deficit» de hematose, de vez que o paciente consome 184 ml de oxigênio em ar e 276 ml de oxigênio em oxigênio, e ventila 17.135 ml em ar e 10.580 ml em oxigênio. Nas provas de esfôrço, o paciente consome mais oxigênio quando em oxigênio (391 ml em oxigênio e 322 ml em ar), ventilando muito mais em ar (38.893 ml em ar e 15.525 ml em oxigênio), revelando tal fato deficiência de hematose. Índice de velocidade aérea de 1,2, sugestivo de insuficiência restritiva. CONCLUI-SE, pois, que tanto em repouso como em trabalho há «deficit» de hematose, o qual

tende a se agravar com o tempo, quando a capacidade ventilatória do paciente sofrer redução.

Neste caso, é fora de dúvida, que o paciente no pós-operatório imediato, p. ex., de uma intervenção abdominal, quando em AR, deve estar em condições de ventilar 17.135 ml a fim de consumir 184 ml de oxigênio, cifras obtidas em repouso, ou entrará em «deficit» de oxigenação, o que pode ser superado desde que lhe sejam fornecidos 10.580 ml de oxigênio por minuto, quando consumirá, então, mais oxigênio, i. é, 276 ml.

2°) C. R. A. M., masculino, 18 anos, auxiliar de escritório.

Diagnóstico: Tuberculose pulmonar.

Seu exame funcional revela:

ESPIROGRAMA

Frequência	29	movtos./min.
Apnéia voluntária inspiratória	27	segundos
Capacidade vital	2.116	ml
Capacidade vital teórica	4.125	ml
Volume de ar inspirado	345	$\mathbf{m}\mathbf{l}$
Volume de ar expirado	1.058	ml
Consumo de oxigênio em ar por minuto	299	ml
Consumo de oxigênio em oxigênio por		
minuto	322	ml
Volume respiratório em ar por minuto	22.402	ml
Volume respiratório em oxigênio por		
minuto	9.660	ml
Máxima capacidade ventilatória	51.896	ml
Máxima capacidade ventilatória teórica	71.896	ml
Reservas de ventilação	569	$% \frac{\partial C}{\partial x} = \frac{1}{2} \left(\frac{\partial C}{\partial x} - \frac{\partial C}{\partial x} \right) = 0$
Equivalente de ventilação	7.490	\mathbf{m} l
Índice de velocidade aérea	1,	3

CONCLUSÕES

Baixa apnéia voluntária: 27 segundos. Capacidade vital má: 51% da cifra teórica prevista para o caso. Volume respiratório minuto em ar de 22.402 ml, com um consumo de oxigênio de 299 ml, o que proporciona um equivalente de ventilação elevado: 7.490 ml. Máxima capacidade ventilatória de 51.796 ml, representando 72% da cifra teórica, o que, dado o alto volume respiratório minuto, origina reservas de ventilação nulas: 56%. Comparando as cifras obtidas em repouso, o consumo de oxigênio em oxigênio é ligeiramente superior ao obtido em ar (322 ml e 299 ml, respectivamente). No entanto, o volume respiratório minuto em ar é nitidamente mais elevado do que o obtido em oxigênio (22.402 ml e 9.660 ml, respectivamente), o que evidencia acentuada insuficiência respiratória compensada em repouso. Índice de velocidade aérea de 1,3, sugestivo de insuficiência restritiva. CONCLUI-SE, pois, que deve ser encarada com suma prudência tôda indicação cirúrgica que venha a diminuir não só o campo de hematose como a capacidade ventilatória do paciente (10).

Igualmente, neste caso, também, se efetivada a indicação cirúrgica proposta, o paciente, para garantir sua hematese, contanto que não tenha sido por demais lesado no parenquima pulmonar funcionante, no pós-operatório deverá estar em condições de ventilar 22.402 ml, quando em ar.

As propriedades do

Dilaudid "Knoll"

superior à morfina em virtude de sua

intensa ação analgésica e do seu efeito rápido e mais prolongado, de sua boa tolerância e diminuta influência sôbre o peristaltismo

são aproveitadas nas combinações

Dilaudid=Atropina

cujo componente atropina aumenta a tolerância aos opiáceos, age opostamente à sua influência depressiva e diminui as secreções salivares e

Dilaudid=Escopolamina

especialmente indicado para produzir o sono crepuscular, permitindo, desta maneira,

uma medicação pré e pós-operatória individualizada.

Caixa Postal, 1469

ACABA DE SAIR

NADIA DU BOUCHET

Anesthésiologiste de l'hôpital Broussais

JEAN LE BRIGAND

Médecin-Assistant des hôpitaux de Paris

ANESTHÉSIE-RÉANIMATION

avec la collaboration de

- L. AMIOT, CARETE, G. DAVID, G. DELAHAYE, J. FREDET
- J. GUERY, P. HUGUENARD, P. JAQUENOUD, B. JAULMES,
- E. KERN, J. LASSNER, R. NEDEY, J. PASSELECQ, C. PERRIN,
- J. J. POCIDALO, E. PROCHIANTZ, P. VELLAY et G. VOURC'H

Uma obra completa em *anestesia e reanimaçã* o

Atualizações anuais mantendo seus conhecimentos sempre em dia

O maior sucesso em vendas nos Estados Unidos e Brasil

Tomo 1 — Anesthesie — 1.008 pág. 187 figuras Cr\$ 4.200,00 Tomo 2 — Réanimation — 940 pág. 26 figuras Cr\$ 4.200,00

- FACILIDADE DE PAGAMENTO -

Distribuição e Vendas

AGÊNCIA INTERNACIONAL DE ASSINATURAS

Belo Horizonte — Rio — Pôrto Alegre — Salvador — Curitiba