

Uso da Distribuição Granulométrica como Parâmetro de Controle na Elaboração da Massa Cerâmica de Composição Binária

Raimundo Humberto C. Lima*, Maria Margarita T. Moreno

Departamento de Petrologia e Metalogenia, Universidade Estadual Paulista – UNESP, Av. 24A, 1515, 13506-900 Rio Claro - SP, Brasil *e-mail: humbertoclima@yahoo.com.br

Resumo: A maioria dos ceramistas do pólo de Russas (região leste do Ceará), faz uso de métodos empíricos, herdados dos antepassados para análise da matéria prima e formulação de misturas, definindo, através de tentativas, a dosagem dos componentes necessários à fabricação de telhas. Este trabalho foi realizado com a finalidade de estudar métodos para otimizar a extração das minas aluvionares do Pólo através do uso de técnicas de misturas de fácil aplicação e que posam ser aplicadas como parâmetros de controle para melhoria dos produtos. O método aplicado se baseia nos valores de absorção d'água (AA) das amostras individuais e valores pré-determinados de AA e temperatura de queima para as misturas. A preparação destas foi realizada com componentes plásticos e não-plásticos utilizados em quatro cerâmicas, determinando AA em corpos de prova prensados com 8% de umidade e densidade de prensagem de 2.0 g.cm⁻³. A partir desses valores foram calculadas as proporções dos componentes visando absorção d'água e 14%. Os resultados permitiram avaliar a influência da distribuição granulométrica nas misturas de material plástico e não plástico, podendo-se obter a proporção mais adequada para conseguir os resultados pretendidos, nas condições em que as amostras foram processadas.

Palavras-chave: massas cerâmicas, ceramica estrutural, absorção de água.

1. Introdução

Na fabricação industrial de produtos cerâmicos estruturais, tais como telhas, no pólo cerâmico de Russas, região leste do estado do Ceará, são quase sempre utilizadas composições binárias de matérias-primas argilosas, cuja proporção é ajustada por métodos empíricos tradicionais utilizando uma pá-carregadeira como meio de dosagem e homogeneização da massa, resultando em produtos sem constância nas suas características por falta de controle, principalmente, nas matérias primas. Por outro lado, a demanda de produtos com qualidade controlada e a necessidade de reduzir os custos operacionais de fabrico, vem estimulando pesquisadores a estudar métodos de controle na preparação das misturas, dentre os quais pode-se citar: Saboya Jr. e Alexandre¹; Correia et al.²; e Grun³.

Dessa forma, este trabalho teve como objetivo estudar o comportamento de misturas de matérias primas cerâmicas empregadas no pólo de Russas com o intuito de servir como base para ações de melhoria e controle no processo de elaboração de massa. A pesquisa foi desenvolvida em função da variação das propriedades cerâmicas, composição e distribuição granulométrica das partículas, aplicando métodos de preparação de massas e analisando os resultados após queima, tanto das matérias primas como das misturas⁴.

2. Materiais e Métodos

As matérias-primas utilizadas foram fornecidas por quatro empresas cerâmicas instaladas no Pólo (IG, CT, CD e EZ). Todas utilizam dois tipos de matéria-prima na preparação das massas: uma argila gorda (plástica) e uma argila magra (não-plástica), denominadas: IGp (p = plástica) e IGnp (np = não-plástica); CTp e CTnp; CDp e CDnp; EZp e EZnp.

Após tratamento inicial de secagem e quarteamento, foi determinada a distribuição granulométrica de cada amostra por peneiramento a seco utilizando peneiras com abertura variando de 4,75 a 0,053 mm (respectivamente 4 a 270 mesh) e sedimentação pelo método do densímetro para o material passante.

A composição química das amostras foi determinada por fluorescência de raios X (FRX), e por se tratar de composições semelhantes⁵, esta é representada pelos dados das amostras CT. As fases cristalinas foram identificadas por difração de raios X (DRX). A partir do método dos poderes refletores, foi possível uma avaliação semi-quantitativa dos minerais mais frequentes e representativos⁶⁷.

Para o desenvolvimento da pesquisa foram preparados corpos de prova de aproximadamente 2×7 cm (cinco peças por amostra) tanto das argilas individuais como das misturas, preparadas combinando em diferentes proporções os materiais plásticos e não plásticos das respectivas indústrias. Os dados foram trabalhados visando entender o comportamento das propriedades medidas nas misturas em relação aos componentes individuais. As etapas são descritas a seguir:

- Umidificação com teor de 8% de água e condicionadas em sacos plásticos para homogeneização completa da umidade do material por 24 horas;
- 2. Prensagem de corpos de prova em uma prensa hidráulica utilizando 19 g de material, com densidade de prensagem, aproximada, de 2 g.cm⁻³;
- 3. Secagem em estufa à 110 °C por 24 horas;
- Queima dos corpos de prova em forno marca Maitec em ciclo lento, permanecendo no patamar de maior temperatura (925 °C) por 180 minutos;
- 5. Ensaios para obtenção da absorção de água nos corpos queimados; e
- 6. Preparação de misturas através de cálculos teóricos a partir da Equação 1, fixando a absorção de água e a temperatura de queima⁴, variando as proporções (plástica e não plástica) com a finalidade de orientar a correção das proporções para atingir a absorção de água desejada.

AAr = X1.AA1 + X2.AA2 (1)

Sendo $(X_1 + X_2) = 1$ a Equação 2 pode ser escrita:

$$AAr = (AA1 - AA2) X1 + AA2$$
⁽²⁾

Onde $X_1 e X_2$ são as frações da mistura, AA1 e AA2 são os índices de absorção de água dos componentes individuais, obtidos a uma temperatura (T) e AAr a absorção de água requerida à mesma temperatura. A Equação 2 corresponde a uma reta que depende somente dos valores da AA de cada componente na mistura.

Utilizando os valores teóricos, experimentais e respectivas dosagens (Tabela 1), os dados foram lançados em gráficos para analisar o comportamento de queima das diferentes amostras. Os valores de X são expressos em porcentagem (%), variando de 0 a 100.

Para fins comparativos, a partir dos gráficos, foram obtidas as proporções teóricas necessárias para absorção de água igual a 14 em todas as amostras. Este valor foi definido em razão das condições de processamento dos corpos de prova que apresentaram AA sempre próximos a ele. Por outro lado, este valor é inferior ao limite máximo de 20% de AA estabelecido na norma NBR 15310/2005⁸ para telhas cerâmicas.

Foram construídas curvas de distribuição granulométrica das misturas, para se entender a influência que a mesma tem sobre a da variação da AA em relação aos componentes individuais.

3. Resultados e Discussão

3.1. Caracterização dos componentes individuais

3.1.1. Caracterização granulométrica

A Figura 1 mostra as curvas de distribuição granulométrica das várias amostras, estabelecendo um agrupamento para as não-plásticas diferente do grupo das plásticas.

Como resultado, o agrupamento plástico (P) apresenta uma porcentagem maior de partículas finas, com diâmetro inferior a 0,002 mm, e intermediárias (de 0,002 a 0,062 mm) do que o

agrupamento não plástico (NP), significando que as diferenças de AA entre matérias primas P e NP, resultam do empacotamento da NP que deixa espaços intergranulares maiores que a P, consequentemente, menor número de contatos intergranulares que facilitam a reativação durante a sinterização.

3.1.2. Caracterização mineralógica e química

As argilas P e NP apresentam, em geral, similaridades mineralógicas entre si. Em amostra total foram identificados:

Figura 1. Distribuição granulométrica dos componentes individuais das matérias-primas estudadas. Destacados em círculos os agrupamentos identificados.

Amostras	Proporção (%) X p – X np	AA (%) Experimental	AA (%) Teórica	Desvio padrão
	0-100	15,0	15,0	0,4
	25 - 75	14,7		0,1
EZ	33 - 67	14,6		0,1
	60 - 0	14,3		0,1
	100 - 0	13,8	13,8	0,1
	0-100	14,1	14,1	0,4
	25 - 75	13,7		0,3
	30 - 70	13,7		0,1
CD	50 - 50	13,4		0,2
	52 - 48	13,4		0,1
	75 - 25	13,1		0,2
	100 - 0	12,8	12,8	0,4
IG	0 - 100	15,1	15,1	0,6
	20 - 80	14,6		0,1
	40 - 60	14,2		0,1
	60 - 40	13,5		0,2
	100 - 0	12,5	12,5	0,3
СТ	0 - 100	14,7	14,7	0,1
	20 - 80	14,5		0,4
	50 - 50	14,1		0,3
	75 - 25	13,8		0,3
	100 - 0	13,5	13,5	0,5

Tabela 1. Proporções das misturas com respectivos valores de AA (teórica e experimental) utilizados para construção dos gráficos.

quartzo, plagioclásio, feldspato potássico; e na fração argila: esmectita, ilita, caulinita, esse último mais abundante, e a presença de interestratificados irregulares ilita-esmectita, em pequena quantidade, em algumas amostras.

Os resultados da Tabela 2 mostram os valores quantitativos da análise química. As principais diferenças ocorrem pelo maior conteúdo de SiO₂, CaO, Na₂O, em NP indicando tratar de um material menos alterado em relação a P, no qual as quantidades de Al₂O₂, Fe₂O₂ e perda ao fogo são maiores, devido a intemperização mais acentuada.

A análise mineralógica semi-quantitativa das amostras (Tabela 3), mostra que as argilas P são mais ricas em caulinita e menos em esmectita e illita que as NP, indicando maior transformação destes argilominerais a caulinita. Nas amostras totais, o maior teor de quartzo e feldspatos, também indica menor alteração destes em NP do que em P. As diferencas, aparentemente pequenas, são suficientes para dar características cerâmicas diferenciadas entre as argilas P e NP

3.1.3. Formulação de composições binárias

Quando se investiga uma propriedade cerâmica de uma massa de composição binária, a propriedade analisada, nos corpos de prova, depende da proporção dos componentes misturados e do empacotamento adquirido durante a prensagem, ou seja, da distribuição granulométrica resultante na mistura. Ao serem queimados, a sinterização vai depender, também, da temperatura, do tempo de permanência na temperatura máxima e da composição.

Idealmente, mistura de dois componentes, corresponderia a valores localizados na reta definida pela Equação 2, o que nem sempre ocorre devido a interferência de outros fatores, porém, estes valores podem ser ajustados de maneira a se aproximar dos valores calculados. Nas Figuras 2, 4, 6 e 8 são apresentados os gráficos de variação com a composição, nos quais a reta representa os valores "teóricos" de AA e a curva os valores obtidos experimentalmente. Os dados experimentais assumem três configurações: uma curva situada acima da reta, uma abaixo da reta e outra com tendência a se aproximar da reta.

Nas Figuras 2 e 4, a curva obtida para as amostras EZ e CT está situada abaixo da reta, indicando valores menores do que os previstos com os dados teóricos, evidenciando um grau de empacotamento melhor que o esperado, e, consequentemente, melhor sinterização, em função do maior número de contatos intergranulares que contribuem para que as reações ocorram, neste caso sem formação de fase líquida por terem sido queimadas a 925 °C⁹.

No caso da amostra CD (Figura 6), ao contrário das amostras EZ e CT, a curva está situada acima da reta, indicando valores maiores do que os previstos com os dados teóricos, proporcionando uma sinterização pior do que o esperado, ou seja, a AA = 14% está abaixo da AA estabelecida na proporção teórica.

Para a amostra IG (Figura 8), a curva está abaixo da reta, mas a uma distância muito próxima a esta, ou seja, a curva tende a se aproximar da reta, indicando valores experimentais muito próximo dos valores calculados.

Figura 2. Modelo estabelecido para a amostra EZ.

Figura 3. Curvas granulométricas dos componentes individuais e misturas para a amostra EZ.

	Tabela 2	2. Teores	químicos dos	elementos	maiores n	na forr	na de	óxidos	para	CTnp	e CTp
--	----------	-----------	--------------	-----------	-----------	---------	-------	--------	------	------	-------

Tabela 2. Teoles q	unnicos dos	elementos ma	alores na ton		s para C mp	e CIp.					
Elementos	SiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	P.F.
Amostra	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
CT np	62,94	17,16	5,74	0,08	1,58	1,40	2,09	3,03	0,80	0,08	5,10
CT p	56,42	19,63	7,66	0,13	1,79	0,96	1,48	2,94	0,97	0,11	7,90

Tabela 3. Resultados composicionais da análise semi-quantitativa das amostras plásticas (p) e não plásticas (np). Filos = filosilicato; qz = quartzo; Plagio = plagioclásio; felds K = feldspato potássico; Esm = Esmectita; Caul = Caulinita.

			Fração argila					
Mineral	Filos (%)	qz (%)	Plagio (%)	Felds. K (%)	Outros (%)	Esm (%)	Ilita (%)	Caul (%)
Amostra p	71	15	5	5	4	10	22	68
Amostra np	55	30	7	7	1	12	26	62

Figura 4. Modelo estabelecido para a amostra CT.

Figura 5. Curvas granulométricas dos componentes individuais e misturas para a amostra CT.

Figura 6. Modelo estabelecido para a amostra CD.

Figura 7. Curvas granulométricas dos componentes individuais e misturas para a amostra CD.

Figura 8. Modelo estabelecido para a amostra IG.

Figura 9. Curvas granulométricas dos componentes individuais e misturas para a amostra IG.

Figura 10. Diagrama das curvas de distribuição granulométrica das misturas experimentais e dos valores teóricos correspondente a AA de 14%.

Tabela 4. Valores das proporções, experimental e teórica, para AA requerida de 14%.

Amostras	Proporção experimental	Proporção teórica
EZ	17% p + 83% np	82% p + 18% np
СТ	17% p + 83% np	58% p + 42% np
CD	80% p + 20% np	5% p + 95% np
IG	32% p + 68% np	42% p + 58% np

Para obter a proporção experimental (Tabela 4) para uma determinada AA, nas mesmas condições de queima apresentadas no gráfico, a porcentagem (%) de um dos componentes pode ser obtida por interpolação na curva experimental. Já a proporção adequada (teórica), nestas mesmas condições, será determinada pela interpolação na curva teórica.

Esta análise evidencia a necessidade de um conhecimento prévio do comportamento das argilas durante a queima, sendo que, para encontrar as melhores proporções entre dois componentes, é necessário preparar corpos de prova destes componentes e pelo menos três combinações (por exemplo: 25, 50 e 75%) para obter a curva experimental e fazer a interpolação para a AA desejada. Se AA esperada for maior que a dos componentes, as condições não são favoráveis e deverá ser testada outra temperatura de queima (ou mudar um dos componentes).

Nas Figuras 3, 5, 7, 9 e 10 são mostradas as curvas granulométricas das misturas para obter AA = 14%. A mistura experimental CD apresenta distribuição granulométrica bem diferente de CT, IG e EZ e estas são muito próximas entre si caracterizando um empacotamento semelhante, o que indica que o processo de sinterização nessa temperatura depende, principalmente, da distribuição granulométrica (considerando que todas as misturas foram prensadas para obter densidade constante) e se apresenta como uma alternativa de controle das misturas a partir de determinadas matérias primas.

Com relação à distribuição granulométrica teórica (na reta) e experimental para AA = 14% uma inversão na mistura CD em relação a CT, IG e EZ (Figura 10) mostra em CD experimental aumento significativo de finos (menores que 0,03 mm) e resulta em uma distribuição granulométrica menos variada que em CD teórica.

As curvas experimentais CT, IG e EZ, situadas abaixo das respectivas curvas teóricas, formam um "padrão" em que o conteúdo de partículas finas são similares, e portanto, as curvas ficam próximas. Desta forma, uma nova curva granulométrica formada pela média entre as curvas granulométricas das amostras CT, IG e EZ pode ser estabelecida e ser utilizada como um parâmetro de controle, obtido dentro das condições do processo.

4. Conclusões

Este trabalho demonstra a importância de conhecer o comportamento das argilas durante a queima. Para encontrar as melhores proporções no preparo das massas cerâmicas, é necessária a realização de testes que definam de forma adequada a variação nas propriedades, associada a composição, resultando num planejamento adequado e uso racional das matérias-primas.

Pressupondo que as variações químicas e mineralógicas são pequenas entre as fontes de matéria prima dos ceramistas do Pólo (plásticas e não plásticas), e as temperaturas menores que 1000 °C, o efeito dominante sobre a sinterização está na distribuição granulométrica, que determina o empacotamento durante o processo de fabricação dos corpos de prova e portanto, a quantidade de contatos intergranulares que favorecem a mobilidade dos elementos e portanto a reativação.

O estudo do comportamento granulométrico dos componentes individuais e das misturas, determina uma distribuição granulométrica adequada para ser utilizada como parâmetro de controle, de acordo com a matéria-prima e condições de fabricação. Este procedimento contrapõe a rotina atual e permite a fabricação de produtos uniformes e padronizados.

Referências

- SABOYA Jr., F.; ALEXANDRE, J. Algoritmo para misturas combinadas de solos na confecção de peças cerâmicas vermelhas. Cerâmica, v. 45, p. 181-183, 1999.
- CORREIA, S. L.; HOTZA, D.; SEGADÃES, A. M. Uso de técnicas de planejamento experimental e programação não linear para otimização de massas cerâmicas triaxiais. Matéria, v. 9, n. 4, p. 271-279, 2004.
- GRUN, E. Caracterização de argilas provenientes de Canelinha/ SC e estudo de formulações de massas cerâmicas. Joinville, 2007. 60 p. Dissertação (Mestrado em Ciências e Engenharia de Materiais) -Universidade do Estado de Santa Catarina - UDESC.
- MORENO, M. M. T.; BARTOLOMEU, D.; LIMA, R. H. C. Análise do comportamento de queima de argilas e formulações para revestimento cerâmico, Cerâmica, v. 55, n. 335, p. 286-295, 2009.
- LIMA, R. H. C.; MORENO, M. M. T.; GOMES, C. S. F. Mineralogical, chemical and granulometric data of alluvial sediments. In: CONGRESSO DE GEOQUÍMICA DOS PAÍSES DE LÍNGUA PORTUGUESA, 9, 2008, Cabo Verde. Anais... Aveiro: UA, 2008.
- SCHULTZ, L. G. Quantitative interpretation of mineralogical composition from X-Ray and chemical data for the Perre Shale. United States: USGS, 1964. p. 1-31 (United States Geological Survey Professional Paper, n. 391-C)
- MARTINS, R. S. V. S. Investigação científica e tecnológica de matérias-primas minerais de Santiago do Cacém (Alentejo) e das suas potencialidades para a indústria cerâmica. Aveiro, 2006. 407 p. Tese (Doutorado em Geologia) - Universidade de Aveiro - UA.
- Associação Brasileira de Normas Técnicas ABNT. NBR 15.310. Componentes cerâmicos - Telhas - Terminologia, requesitos e métodos de ensaio. Rio de Janeiro, 2005. 46 p.
- BARBA, A.; BELTRÁN, V.; FELÍU, C. et al. Matérias primas para la fabricación de suportes de baldosas cerámicas. 2 ed. Castellón: Instituto de Tecnologia Cerámica, 1997. p. 160.