

Fatores Chaves na Resistência a Abrasão de Pisos de Grês Porcelanato

P.M. Tenorio Cavalcante¹, M. Dondi², G. Guarini², C. Melandri², M. Raimondo², C. Zanelli² e E.R. Almendra¹

¹ COPPE-UFRJ, Rio de Janeiro

² CNR-ISTEC, Faenza (Itália)

Resumo: Neste trabalho foram utilizados modelos que predizem a quantidade de material abrasionado por unidade de escoamento do corpo abrasivo (modelos de Evans e Marshall e de Hutchings), com o intuito de avaliar a aplicabilidade destes à projeção e/ou controle de produtos submetidos a processos de abrasão na indústria cerâmica, como é o caso dos pisos polidos de grês porcelanato. Verificou-se que o modelo de Evans e Marshal não retrata bem os dados de abrasão profunda. Já o modelo de Hutchings apresentou boa conformidade com os dados experimentais.

Palavras-chaves: abrasão, grês porcelanato, polimento e desgaste

Introdução

A resistência à abrasão é um dos requisitos técnicos mais importantes de pisos de pavimentação com particular atenção ao grês porcelanato, que freqüentemente é colocado em ambiente sujeito a alto tráfego.

Um adequado conhecimento do comportamento tribológico do material cerâmico é fundamental:

- para prever a durabilidade do piso colocado e estabelecer o correto uso;
- para melhorar o processo de polimento, com o intuito de obter uma superfície lisa com menos defeitos e menos desperdício devido a ruptura.

A resposta do grês porcelanato a solicitação mecânica é prevalentemente frágil e pode ser representada por um esquema clássico de formação da fratura por identação¹⁻³. No ponto de contato inicial, se concentra um notável esforço, que produz um fluxo plástico e/ou uma densificação em torno da ponta do indentador (Zona D na Fig. 1a). Qualquer que seja a carga aplicada superior a um valor crítico, os esforços produzem uma trinca mediana (M na Fig. 1b) que se estende progressivamente com o aumento da carga (Fig. 1c). Relaxando a carga aplicada, primeiro a trinca mediana se fecha (Fig. 1d), depois se formam trincas laterais (L na Fig. 1e) que crescem até interceptarem a superfície (Fig. 1f). Tais fraturas são produzidas pela tensão elástica residual, devido ao relaxamento do material em torno da zona de contato⁴⁻⁵.

Em linhas gerais, a quantidade de massa Q que pode

ser retirada por abrasão de um material frágil é diretamente proporcional a carga aplicada W e inversamente proporcional a dureza H e a resistência que o material faz a propagação da trinca, ou seja, tenacidade à fratura K_a:

$$Q \propto \frac{W}{H K_{c}}$$
(1)

Um modelo simples do processo de desgaste é representado por um corpo abrasivo que com uma certa carga produz um sulco na superfície do material cerâmico⁶. O volume removido é definido pela extensão das trincas laterais, sabendo-se que b é a distância até a superfície e c a distância até o sulco (Fig. 2). Tal volume corresponde, por unidade de escoamento, a 2bc e pode ser calculada sabendo que:

$$b = a_1 \left(\frac{E}{H}\right)^{2/5} \left(\frac{W}{H}\right)^{1/2}$$
(2)

$$c = a_2 \frac{(E/H)^{3/5} W^{5/8}}{K_c^{1/2} H^{5/8}}$$
(3)

onde $a_1 e a_2$ são constantes geométricas, E é o módulo de Young, W é a carga aplicada, H é a dureza do material cerâmico e K_o é a tenacidade à fratura⁶⁻⁷.

Deste esquema geométrico foram desenvolvidos diver-

sos modelos que predizem a quantidade de material abrasionado por unidade de escoamento do corpo abrasivo (Q):

Modelo de Evans & Marshall⁸
$$Q = a_3 \frac{W^{5/8}}{K_c^{1/2} H^{5/8}} (\frac{E}{H})^{4/5}$$
 (4)

Modelo de Hutchings⁶ $Q = a_4 \frac{W^{5/4} d^{1/2}}{A^{1/2} K_c^{3/4} H^{1/2}}$ (5)

onde $a_3 e a_4 são$ constantes independentes do tipo de material, W é a carga aplicada, E é o módulo de Young, H é a dureza do material cerâmico, K_c é a tenacidade à fratura, d é a dimensão das partículas de abrasivo e A é a área aparente de contato.

O escopo deste trabalho é avaliar a aplicabilidade de tais modelos aos pisos de grês porcelanato, procurando

Figura 1. Resposta a solicitação mecânica de um indentado em um material frágil⁴.

Figura 2. Modelo do mecanismo de abrasão sobre a superfície de um material frágil⁵.

formular um sistema de previsão do comportamento ao desgaste, de mais fácil aplicação o possível, à projeção e ao controle dos produtos na indústria cerâmica.

Materiais e Métodos

Foram analisados 10 tipos de pisos de grês porcelanato de produção industrial brasileira e italiana. Tratam-se de produtos não esmaltados, do tipo tinta unita, obtidos por um único carregamento de pós na prensa.

A resistência à abrasão profunda foi determinada segundo a norma ISO 10545-6, com o uso do abrasímetro da marca Gabbrielli CAP2. A abrasão foi realizada colocando contra o piso um disco de raio r = 100 mm e espessura h = 10 mm, rodando a 75 rpm, com uma carga W de 27,93 N e por uma distância de abrasão L de 94,2 m, fazendo contemporaneamente cair entre o disco e o piso um fluxo de corundum (dimensão média d = 0,185 mm) de cerca 100 g/min. Ao término da prova foi medida o comprimento da corda, para obter o volume retirado V_{abr} segundo a relação (Fig. 3):

$$V_{abr} = \left(\frac{\pi \ \alpha}{180} - \operatorname{sen} \alpha\right) \quad \frac{h \ (2r)^2}{8} \tag{6}$$

onde sen $\alpha/2 = c/2r$. A quantidade de material abrasionado por unidade de escoamento foi calculada como $Q = V_{abr}/L$. A área aparente de contato foi estimada como A = c h/2.

A porosidade aberta P_a e a densidade aparente ρ_a foram determinadas utilizando a norma ISO 10545-3. A porosidade total foi calculada pela relação entre ρ_a e o peso específico ρ_s medido com um picnômetro a He: P_t = 100 (1- ρ_a/ρ_s). A porosidade fechada foi calculada pela fórmula P_f = P_t - P_a. O erro da medida é cerca de 0,01% para P_a e 0,1% para P_t.

A composição de fase foi quantificada mediante difração de raios X do pó (XRPD, Rigaku Miniflex, Cu

Figura 3. Esquema do abrasímetro usado na prova ISO 10545-6. Descrição e símbolo no texto.

densidade aparente r _a , microdureza Vickers HV, módulo de Young E, tenacidade à fratura K _{Ie} .											
	V _{abr} (m	1m ³)	Q	А	P _t	P _f	P _a	r	HV	Е	K _{Ic}
	media	d.s.	$mm^3 m^{-1}$	mm^2	%vol.	%vol.	%vol.	g cm ⁻³	GPa	GPa	MPa m ^{-0.5}
PG	145,3	0,6	1,542	130,0	5,29	5,25	0,04	2,49	6,0	70	1,20
NE	142,3	0,8	1,510	127,5	3,39	3,30	0,09	2,48	6,2	72	1,25
NT	142,3	0,5	1,510	127,5	3,54	3,36	0,18	2,48	5,9	72	1,21
HE	158,2	4,0	1,679	132,5	7,10	7,54	0,16	2,36	5,6	64	1,16
CA	155,7	0,4	1,652	132,5	5,34	5,05	0,29	2,43	6,4	63	1,14
OP	136,4	0,1	1,447	127,5	7,92	9,94	0,17	2,33	6,8	71	1,20
PL	131,0	1,4	1,390	125,0	6,13	6,00	0,13	2,36	5,8	71	1,07
CE	115,8	1,5	1,229	120,0	3,77	3,74	0,03	2,47	6,8	77	1,31
EL	126,9	2,8	1,347	125,0	4,88	4,76	0,12	2,46	6,8	69	1,16
PO	138.0	35	1 465	127.5	6.04	5 96	0.08	2 51	64	72	1 14

Tabela 1. Características tribológicas, físicas e mecânicas dos pisos de grês porcelanato: volume retirado V_{abr} , quantidade de material abrasionado por unidade de escoamento do corpo abrasivo Q, área aparente de contato A, porosidade aberta P_a , fechada P_f e total P_f , densidade aparente r_a , microdureza Vickers HV, módulo de Young E, tenacidade à fratura K_{ta} .

Figura 4. Comparação entre o volume abrasionado determinado experimentalmente (Q) e o volume abrasionado calculado (Q', sem a constante a) em base aos modelos: a) da equação (4) e b) da equação (5).

K α) com método RIR, usando CaF₂ como padrão interno, com uma incerteza experimental de ± 0,5%.

Foram medidas as seguintes propriedades mecânicas:

- microdureza Vickers segundo a norma ENV 843-4 (Zwick 3212, carga aplicada 9,8 N, com erro experimental de ± 0,1 GPa);
- módulo de Young segundo a norma ENV 843-2 (Hewlett-Packard 4194A, erro experimental de ± 0,5 GPa);
- tenacidade à fratura de acordo com a norma ENV 13234 (SENB, Instron 1195, erro experimental de \pm 0,02 MPa m^{0,5}).

Resultados e discussões

A resistência à abrasão varia de 116 a 158 mm³ que correspondem, em termos de taxa de abrasão Q a um valor de 1,23 a 1,68 mm³/m (Tabela 1).

Tentou-se aplicar modelos de previsão definitiva de resistência à abrasão utilizando as equações (4) e (5), confrontando os valores medidos com aqueles calculados de acordo com as condições experimentais e com as propriedades mecânicas dos produtos testados. Em particular, são comparados os valores experimentais de Q e aqueles calculados Q', dos quais não compreendem as constantes a_3 ou a_4 do modelo (Fig. 4):

- o modelo (4) não retrata bem os dados de abrasão profunda. Em efeito, podemos observar uma correlação negativa entre o volume abrasionado e o módulo de Young que é crescente e que contraria o previsto pelo modelo.
- O modelo (5) pode ser aplicado aos dados de abrasão profunda, a não ser com uma exceção representada pela amostra PL e com um coeficiente de correlação não muito alto ($R^2 = 0,59$). O fator a_4 neste caso vale cerca de 0,57.

Na interpretação dos resultados, observamos que os materiais analisados são aparentemente densos ($P_a < 0.3\%$), mas na verdade possuem uma porosidade total variável entre 3,8 a 7,9%. A abrasão profunda é muito influenciada pela porosidade (Fig. 5) uma vez que as variáveis mais im-

portantes dos dois modelos (dureza, tenacidade à fratura, módulo de Young) resultam significativamente correlacionadas com os valores de porosidade total (Fig. 6). Observamos também que a composição de fase (Tabela 2) condiciona a resistência à abrasão e provavelmente influencia não só a dureza como também a tenacidade à fratura.

Com o objetivo de explorar a correlação existente entre a abrasão Q e as variáveis físicas, mecânicas e mineralógicas do grês porcelanato, foi também realizada uma análise estatística multivariada com extração dos componentes principais. Em efeito, esta análise revela uma correlação inversa entre o volume abrasionado Q (Fig. 7):

- com os valores de densidade aparente e de características mecânicas (dureza, tenacidade à fratura, módulo elástico);
- com as quantidades de mulita e silicato de zircônio;
- Ao contrário, não se percebe alguma correlação significativa com o quartzo, corundum e fase vítrea.

Esta relação negativa entre a quantidade de material abrasionado e o teor de mulita e silicato de zircônio (Fig. 8) é provavelmente devida a elevada dureza dos materiais (7,5 na escala Mohs correspondente a dureza Vickers de cerca 11 GPa). Admite-se também, contribuição de um possível efeito tenacificante (*matrix strengthening*) ligado ao coeficiente de dilatação térmica de mulita e silicato de zircônio ($\alpha_{25-500^{\circ}C}$ 4-5 MK⁻¹) que é inferior aquele médio da matriz de grês porcelanato ($\alpha_{25-500^{\circ}C}$ 7-8 MK⁻¹). Esta situação assegura durante a fase de resfriamento do piso uma compressão na borda da partícula de silicato de zircônio e mulita, que pode aumentar significativamente a resistência a propagação da fratura⁹⁻¹¹.

A ausência de uma significativa correlação entre abrasão e o conteúdo de quartzo ou corundum, não obstante sua dureza (7 e 9 Mohs, isto é cerca de 10 e 25 GPa respectivamente), é provavelmente devido a falta de um efeito tenacificante como aquele descrito pela mulita e silicato de zircônio. Seja pela:

forte diferença de dilatação térmica entre o quartzo

Figura 5. Correlação entre porosidade total e volume abrasionado.

 $(\alpha_{25-500^{\circ}C} 22 \text{ MK}^{-1})$ e a matriz cerâmica, que implica em uma tração nas bordas dos grãos de sílica;

 limitada diferença de comportamento térmico entre o corundum e o grês (ambos cerca de α_{25-500°C} 7,5 MK⁻¹).

As variáveis do produto que mais influenciam na resistência a abrasão do modelo (5) são: a dureza e a tenaci-

Figura 6. Correlação entre porosidade total e microdureza Vickers (A), módulo de Young (B), tenacidade à fratura (C).

	Mulita	Quartzo	Cristobalita	Feldspato	Silicato de zircônio	Corundum	Fase vítrea
PG	6,3	24,7	0,9	3,0	10,7	0,0	54,4
NE	8,8	25,8	1,2	4,0	7,8	3,6	48,9
NT	8,8	28,3	1,8	3,8	7,9	3,4	46,0
HE	11,4	24,1	0,6	1,6	1,3	2,8	58,2
CA	8,2	28,0	0,8	2,7	4,2	0,9	55,2
OP	13,6	22,4	0,0	0,7	2,3	3,4	57,6
PL	13,8	28,5	0,2	0,5	2,3	3,4	53,3
CE	14,4	24,1	0,4	1,1	6,8	0,7	52,0
EL	13,4	21,4	0,0	0,5	6,6	0,8	57,0
PO	10,8	8,8	1,0	4,0	13,6	3,7	58,0

 Tabela 2. Composição de fase do grês porcelanato (% de peso)

Figura 7.Resultados das análises dos componentes principais: os fatores 1 e 2 explicam cerca de 60% da variância total das amostras. Símbolos como na tabela 1.

dade à fratura. Estes dois últimos são por sua vez, influenciadas pela porosidade e pela composição de fase, que por si só podem tentar desenvolver um modelo empírico para a previsão da resistência à abrasão baseada nestas últimas variáveis. Para este propósito, foi feita a análise de regressão múltipla stepwise impondo o volume abrasionado como variável dependente e os componentes mineralógicos e a porosidade como variáveis independentes. O simples modelo de previsão que foi obtido apresentam coeficientes múltiplos de correlação satisfatórios ($R^2 = 0,959$) que consentem uma previsão com boa significância estatística (p-level < 0,0001) do volume abrasionado Q (Fig. 9 e Tabela 3).

Os resultados da regressão múltipla colocam em evidência a positiva influência na resistência à abrasão das fases mineralógicas duras, porque há uma correlação negativa entre o volume abrasionado e a quantidade de mulita, silicato de zircônio e quartzo. Entre estas últimas, o maior efeito de "tenacização", de acordo com os valores dos coeficientes padronizados β , é obtido da mulita (β = -1,31)

Figura 8. Correlação entre o volume abrasionado e o conteúdo de mulita e de silicato de zircônio.

em seguida pelo silicato de zircônio ($\beta = -1,16$) e pelo quartzo ($\beta = -0,72$). Contrariamente ao que foi levantado pela análise estatística fatorial, a regressão múltipla selecionou o quartzo como variável significativa e ignorou a porosidade e a densidade aparente.

Conclusões

A resistência à abrasão profunda dos pisos de grês porcelanato, medidas utilizando a norma ISO 10545-6, segue bem um modelo baseado em características mecânicas (dureza e tenacidade à fratura) e condições de uso (carga, área de contato e dimensões das partículas abrasivas)

As propriedades mecânicas são influenciadas pela porosidade do grês, assim que há uma certa relação positiva entre o volume dos poros e o volume do material abrasionado, que todavia não é em condições de explicar toda a variação das medidas de resistência ao uso.

A composição de fase possui uma notável influência na resistência à abrasão, sobretudo na quantidade de minerais duros. Para este propósito, uma análise estatística

Figura 9. Valores previstos/observados de volume abrasionado obtidos com a análise de regressão múltipla stepwise.

Tabela 3. Resultados da regressão múltipla stepwise para a variável dependente Q(quantidade de material abrasionado por unidade de escoamento). B = coeficiente de correlação não padronizado, β = coeficiente de correlação padronizado.

	Coeficiente de correlação múltipla R = 0,979, R ² = 0,959 p < 0,00015						
	β	err. std.	В	err. std.	p-level		
Intercepta			2,819	0,140	<0,0001		
Mulita	-1,308	0,113	-0,063	0,005	< 0,0001		
Silicato de zircônio	-1,160	0,137	-0,040	0,005	0,0002		
Quartzo	-0,725	0,125	-0,017	0,003	0,0011		

mediante regressão múltipla tem consentido desenvolver um simples modelo de previsão do volume de material abrasionado em função do conteúdo de mulita, silicato de zircônio e quartzo do grês.

Mulita e silicato de zircônio possuem influência na resistência ao desgaste, que se retém devido, não só a sua dureza, mas também a um efeito de tenacificação, provavelmente segundo um mecanismo tipo *matrix strengthening*.

Bibliografia

- Esposito, L.; Tucci, A. Porcelain Stoneware Tile Surfaces. Am. Ceram. Soc. Bull., v. 79, n. 5, p. 59-63, 2000.
- Orts, M.J.; Sanchez, E.; Garcia-Ten, J.; Ibañez, M.J.; Sanchez, J.; Soler, C.; Portoles J. Comportamiento del gres porcelanico durante la operacion de pulido, *Bol. Soc. Esp. Ceram. Vidrio*, v. 40, n. 6, p. 445-453, 2001.
- Malmusi, L.; Tucci, A.; Palmonari, C.; Esposito, L.; Ceramic Floor and Wall Tile: the Working Surface, *Ceram. Acta*, v. 13, n. 4-5, p. 16-27, 2001.
- Lawn, B.R.; Swain, M.V. J. Mater. Sci., v. 10, p. 113-122, 1975.
- Lawn, B.R.; Evans, A.G.; Marshall, D.B. Elastic/Plastic Indentation Damage in Ceramics, The Median/Radial Crack System, *J. Am. Ceram. Soc.*, v. 63, n. 9/10, p. 574-583, 1980.

- 6. Evans, A.G. Abrasive Wear in Ceramics. An Assessment. In *The Science of Ceramic Machining and Surface Finishing II*, Hockey B.J. and Rice R.W. (eds.), National Bureau of Standards Spec. Publ. 562, US Gov. Printing Office, p. 1-14, 1979.
- 7. Hutchings, I.M. Tribology: Friction and Wear of Engineering Materials. Edward Arnold, London, p. 273, 1992.
- Evans, A.G.; Marshall, D.B. Wear Mechanism in Ceramics. In *Fundamentals of Friction and Wear of Materials*, Rigney D.A. (ed.), *Am. Soc. Metals*, p. 439-452, 1981.
- Carty W.M., Senapati U., Porcelain Raw materials, processing, phase evolution, and mechanical behaviour., *J. Am. Ceram. Soc.*, v. 81, n. 1, p. 3-20, 1998.
- Leonelli, C.; Bondioli, F.; Veronesi, P.; Romagnoli, M.; Manfredini, T.; Pellacani, G.C.; Cannillo, V. Enhancing the mechanical properties of porcelain stoneware tiles: a microstructural approach, *J. Eur. Ceram. Soc.*, v. 21, n. 6, p. 785-793, 2001.
- Leonelli, C.; Bondioli, F.; Veronesi, P.; Cannillo, V.; Romagnoli, M.; Manfredini, T. Micromechanics principles applied to fracture propagation in porcelain stoneware tiles, *Ceram. Eng. Sci. Proc.*, v. 22, n. 2, p. 191-199, 2001.