A Expansão Térmica dos Revestimentos Cerâmicos Parte IV: Efeitos da Adição de Dolomita

Luís Fernando Bruno Marino e Anselmo O. Boschi

Universidade Federal de São Carlos – Departamento de Engenharia de Materiais Laboratório de Revestimentos Cerâmicos - LaRC - DEMa - UFSCar Rodovia Washington Luiz, km 235, C.P.676, 13565-905 São Carlos - SP Telefone: (16)260-8248 - e-mail: daob@power.ufscar.br

Resumo: Estudou-se os efeitos da adição de dolomita sobre a expansão térmica de uma composição típica de revestimentos classificados pela norma ISO 13006-2/93, como BIII. A introdução de dolomita nas massas de revestimento leva à formação de novas fases (anortita, guelenita, clinoenstatita, etc.) e, dessa forma, altera a expansão térmica do material resultante. Os resultados demonstram os efeitos das fases de cálcio e magnésio e da porosidade sobre a expansão térmica de revestimentos cerâmicos.

Palavras-chaves: expansão térmica, dolomita, revestimentos cerâmicos

Introdução

Como mencionado anteriormente, a expansão térmica de materiais polifásicos é uma conseqüência da expansão de cada uma das fases presentes, da proporção entre elas e da microestrutura (porosidade, microtrincas, anisotropia). Assim, o coeficiente de expansão é o resultado do somatório dos produtos dos coeficientes de expansão de cada fase presente pelas suas respectivas frações volumétricas, somados aos efeitos da microestrutura^{5,6}.

Quando se adiciona uma determinada matéria-prima a uma massa, pode se alterar as reações que ocorrem durante a queima e os produtos formados. Essas alterações, por sua vez podem levar a alterações do comportamento durante a queima e das propriedades do produto queimado.

Na parte III⁴ desta série discutiu-se os efeitos da adição de calcita sobre o comportamento de uma composição típica de azulejos, antes, durante e após a queima, enfatizando-se a expansão térmica durante o aquecimento (retração) e após a queima. A introdução do CaO através da calcita deu origem a uma série de reações e compostos apresentados no referido trabalho. A questão abordada neste trabalho diz respeito aos efeitos da introdução de CaO e MgO através de outra matéria-prima, a dolomita.

Os elementos Ca e Mg fazem parte do grupo II da tabela periódica, conhecidos como alcalino terrosos, onde são vizinhos e portanto apresentam propriedades gerais muito próximas. As matérias-primas geralmente utilizadas para a introdução de Ca e Mg em massas cerâmicas são a calcita $(CaCO_3)$, a dolomita $(CaMg(CO_3)_2)$ e o talco $(Mg_3(Si_2O_5)_2(OH)_2$. Cada uma dessas matérias-primas, entretanto, apresenta certas peculiaridades que poderão levar a comportamentos consideravelmente diferentes. No presente trabalho estudou-se os efeitos da adição de dolomita sobre a mesma composição típica de azulejos utilizada na parte III⁴.

A dolomita é um carbonato duplo de cálcio e magnésio, que se decompõe durante o aquecimento, segundo a equação (1), para dar origem aos óxidos de cálcio e magnésio liberando gás carbônico que representa cerca de 44% de sua massa inicial.

$$CaMg(CO_3)_2 \rightarrow CaO + MgO + 2CO_2 \tag{1}$$

A cerca de 820 °C o CO₂ ligado ao MgO é liberado, levando a uma perda de massa de aproximadamente 20%. Quando a temperatura atinge 950 °C, aproximadamente, se dá a liberação do CO₂ ligado ao CaO ocorrendo uma perda de massa de cerca de 24%.

Deste modo, a diferença fundamental entre a calcita e a dolomita está na presença de carbonato de magnésio na composição da dolomita. A calcita é constituída exclusivamente por carbonato de cálcio e decompõe-se em um único intervalo de temperaturas. A dolomita pode ser compreendida como uma mistura de carbonato de cálcio e carbonato de magnésio, o que proporciona duas decomposições térmicas em temperaturas diferentes.

Metodologia

Utilizou-se uma composição industrial de azulejos, classe BIII, segundo a ISO 13006-2/93, onde a quantidade de dolomita adicionada variou de 0 a 25% (D0, D5, D10, D15, D20 e D25). As composições das massas estudadas, expressas em porcentagem mássica são dadas na Tabela 2. A Tabela 1 traz a composição química da dolomita. As composições das demais matérias-primas foram apresentadas na parte III⁴ desta série.

O procedimento experimental utilizado na preparação dos corpos de prova assim como a caracterização dos mesmos foram mencionados nos trabalhos publicados anteriormente^{1,2}.

Resultados e Discussão

Efeitos sobre as características dos compactos crus

As características das amostras antes da queima: densidade aparente a seco (Ds), retração linear de secagem (RLs) e resistência mecânica a flexão dos corpos secos (RMFs), das diversas composições estudadas são apresentadas na Tabela 3. Nota-se que muito embora a adição de dolomita não tenha afetado consideravelmente as propriedades antes da queima, como era de se esperar há uma ligeira diminuição da retração linear e da resistência mecânica após secagem.

Efeitos sobre o comportamento durante a queima

A Figura 1 apresenta as curvas da expansão térmica irreversível (ETIs) das composições contendo dolomita. As massas com dolomita apresentam um "ombro" de expansão por volta de 1000 °C, que se torna mais pronunciado à medida que o teor de dolomita aumenta. Esta expansão reduz a retração linear de queima do produto e favorece sua estabilidade dimensional. Este efeito, proporcionado pela dolomita, é a principal razão de sua introdução em massas de revestimentos.

Tabela 1. Composição química da dolomita (% mássica).

A expansão que ocorre nesta temperatura é decorrente da formação de fases ricas em cálcio, as quais, por apresentarem densidades menores do que as fases originais, sofrem uma expansão. Na verdade, a reação do óxido de cálcio, presente após a decomposição do carbonato, para a formação de silicatos e aluminossilicatos é a única responsável pelo "ombro" de expansão observado na ETI das massas contendo dolomita. Este mesmo efeito foi detectado nas massas contendo calcita⁴ na parte anterior desta série de artigos. Portanto, é importante ressaltar que esta expansão só ocorre na faixa de temperaturas em que se processa a decomposição do carbonato de cálcio. A decomposição do carbonato de magnésio ocorre em temperaturas mais baixas e não provoca o mesmo efeito na ETI. Assim, pode-se dizer que a queda de retração linear de queima promovida pela dolomita é determinada exclusivamente pela quantidade de CaCO3 que acompanha a matéria prima.

Características dos corpos queimados

As características dos corpos queimados são apresentadas na Tabela 4. A Figura 2 indica a representação gráfica

Figura 1. Curvas dilatométricas irreversíveis (ETI) das composições com vários teores de dolomita.

Matéria-prima	PF	SiO ₂	Al ₂ O ₃	TiO ₂	Fe ₂ O ₃	CaO	MgO	K ₂ O	Na ₂ O
dolomita	44,77	2,64	0,93	0,09	0,29	29,61	21,35	0,06	0,07

Tabela 2. Composições das massas estudadas expressas em percentagem mássica.

Composição	D0	D5	D10	D15	D20	D25
argila a	4,71	4,47	4,24	4	3,76	3,53
argila b	21,18	20,12	19,06	18	16,94	15,88
argila c	44,7	42,47	40,24	38	35,76	33,53
caulim	20	19	18	17	16	15
biscoito	9,41	8,94	8,47	8	7,53	7,06
dolomita	0	5	10	15	20	25

da variação da absorção de água (AA) e da retração linear de queima (RLq) de acordo com a composição da massa.

Observa-se que conforme se aumenta a participação da dolomita na composição, ocorre o incremento da absorção de água e a redução da retração linear de queima. O aumento da absorção de água está relacionado com o aumento da porosidade aparente promovido pela liberação de gases decorrente da decomposição da dolomita. A retração linear de queima é reduzida em virtude da formação de fases cristalinas de cálcio, conforme mencionado anteriormente. A resistência mecânica a flexão aumenta com a adição de dolomita, atingindo um valor máximo para 5% de adição. A partir deste teor de adição, a resistência cai gradativamente com o aumento da quantidade adicionada, mas só atinge valor menor que D0, quando chega-se a 25% de dolomita. Este comportamento pode ser explicado levando-se em conta o aumento prejudicial da porosidade residual, observado pelos valores de absorção de água e porosidade aparente. O aumento de resistência em relação a D0 deve-se à formação de fases de maior resistência,

2.8 3,0 RLq(%) 2,5 AA(%) 2,0 1,5 20 1,0 18 D5 Di5 D20 D25 $\dot{D0}$ $\dot{D10}$ Composição

Figura 2. Variação de AA e RLq com os teores de dolomita adicionados à composição padrão.

como a anortita¹⁴, como verifica-se na Tabela 7 e na Figura 5.

As curvas de expansão térmica dos corpos queimados (ETR) são apresentadas na Figura 3. Na Figura 4 encontram-se as representações dos coeficientes de expansão térmica parciais e total, conforme os dados da Tabela 5.

Analisando-se as Figuras 3 e 4, é possível detectar os efeitos da adição de dolomita sobre a massa de revestimentos. Verifica-se que o comportamento dilatométrico difere significativamente somente para temperaturas superiores a 400 °C, sendo que até tal temperatura os coeficientes de expansão são muito semelhantes. No entanto, observa-se que a composição D0 apresenta elevada expansão entre 500 e 650 °C (trecho de transformação do quartzo $\beta \rightarrow \alpha$), que vai sendo progressivamente reduzida nas massas contendo dolomita (D5 até D25). Este fato está relacionado com a redução da quantidade de quartzo livre que permanece na massa, à medida em que se aumenta o teor de dolomita da mesma. A dolomita consome o quartzo presente em reações

Figura 3. Curvas dilatométricas reversíveis (ETR) das composições com vários teores de dolomita.

Tabela 3. Valores médios das propriedades dos corpos verdes das composições contendo dolomita.

Composição / Propriedade	D0	D5	D10	D15	D20	D25
Ds(g/cm ³)	1,706 ^{0,012}	1,732 ^{0,012}	1,729 ^{0,009}	1,713 ^{0,010}	$1,756^{0,0116}$	$1,768^{0,081}$
RLS(%)	0,091 ^{0,061}	0,071 ^{0,030}	0,068 ^{0,039}	0,078 ^{0,038}	0,065 ^{0,036}	0,064 ^{0,037}
RMFs(kgf/cm ²)	21,30 ^{1,602}	22,13 ^{1,878}	19,64 ^{1,512}	14,21 ^{1,662}	16,03 ^{1,769}	16,26 ^{1,199}

* Os valores sobrescritos são o desvio-padrão dos resultados apresentados.

Tabela 4. Propriedades dos corpos queimados (1130 °C, 12 °C/min, 30 min) das composições contendo dolomita.

Composição / Propriedades	D0	D5	D10	D15	D20	D25
RLQ(%)	3,095 ^{0,315}	3,065 ^{0,475}	3,177 ^{0,378}	2,67 ^{0,868}	1,844 ^{0,428}	$1,172^{0,346}$
RMFq(kgf/cm ²)	140,53 ^{11,87}	201,31 ^{24,78}	189,11 ^{22,69}	179,08 ^{29,49}	158,34 ^{19,40}	129,95 ^{14,49}
PA(%)	34,30 ^{2,12}	34,42 ^{2,24}	34,69 ^{1,28}	37,00 ^{2,73}	39,99 ^{1,99}	42,50 ^{1,39}
AA(%)	19,49 ^{1,89}	19,62 ^{1,89}	19,98 ^{1,03}	22,16 ^{2,28}	24,79 ^{1,91}	27,26 ^{1,29}

* Os valores sobrescritos correspondem ao desvio-padrão.

 α 's.10⁻⁶ °C⁻¹ D0 D5 D10 D15 D20 D25 **α**1(100-500°C) 7,875 7,750 7,250 7,625 7,000 7.250 α2(500-650°C) 12,67 11,33 11,33 11,00 9,667 9,667 α3(650-1000°C) 2.143 2,143 3,286 4,000 4,571 4.429 **α**T₁(100-1000°C) 6,444 6,167 6,389 6,778 6,500 6,556 αT₂(100-1120°C) 6,078 5,441 5,098 5,637 6.176 6.078

Figura 4. Variação dos coeficientes de expansão térmica total e parciais com os teores de dolomita adicionados à composição padrão.

de formação de novas fases que combinam os óxidos de cálcio e magnésio para a formação de silicatos. Este fenômeno é evidenciado pelas difrações de raios-X, que serão comentadas adiante. Portanto, a introdução de dolomita reduz a quantidade de quartzo livre na massa, diminuindo a expansão térmica entre 500 e 650 °C e torna a curva de ETR da massa resultante mais linear.

Tal linearização da curva de dilatação resulta em um comportamento mais previsível e mais adequado para a etapa de resfriamento das peças no forno, pois nesta região ocorre a passagem do quartzo $\beta \rightarrow \alpha$, que gera uma brusca retração da peça e é a responsável pela maior parte dos defeitos de quebras e trincas de resfriamento.

Todos os resultados obtidos a respeito da expansão térmica das massas podem ser convenientemente explicados por meio da análise das fases presentes na microestrutura das composições, juntamente com os dados de porosidade. A Tabela 6 indica os coeficientes de expansão térmica das fases detectadas por difração de raios-X nas diferentes composições. Nota-se que existe uma grande diferença entre os coeficientes das várias fases existentes, de tal modo que a simples mudança da proporção entre as mesmas em uma massa é capaz de alterar bruscamente a expansão térmica resultante.

Os resultados da difração de raios-X estão apresentados na Tabela 7 e esquematizados na Figura 5. Conforme adiciona-se dolomita à composição padrão, primeiramente

* Os valores sobrescritos são o desvio-padrão dos resultados apresentados.

Figura 5. Variação das proporções das fases em função dos teores de dolomita adicionados à composição padrão.

Tabela 6. Coeficientes de expansão médios das fases identificadas por difração de raios-X (α .10⁻⁶ °C⁻¹).

Fases / referência	(10)	(5)*	(6)**	(11)
Quartzo (SiO ₂)	12	14,9		
Mulita (Al ₆ Si ₂ O ₁₃)	5,8	5,3	5,2	
Anortita (CaAl ₂ Si ₂ O ₈)	4,3			
Wolastonita (CaSiO ₃)	9,6			
Clinoenstatita (MgSiO3)	8,2			8
Guelenita (Ca2Al2SiO7)				8
Periclásio (MgO)		13,5		10,5
Diópsido (CaMgSi2O6)	6,8	7,6		9,2
Espinélio (MgAl ₂ O ₄)			8,4	8,3
* a T (0-1000 °C)				

αι (0-1000 °C)

** **α**T (25-1000 °C)

verifica-se uma redução da expansão térmica total, promovida pela redução da quantidade de quartzo. Conforme aumenta-se o teor de dolomita (D10 e D15) a expansão térmica tende a aumentar em virtude da formação de fases de elevada expansão térmica, como a clinoenstatita, o periclásio e o diópsido. A partir de 15% de adição de dolomita, a porosidade passa a exercer influência marcante, produzindo uma leve queda na expansão térmica total. Tais resultados comprovam que a expansão térmica está dire-

Fases Presentes	D0	D5	D10	D15	D20	D25
Quartzo	94,4	87,2	82,3	64,0	54,7	61,4
Mulita	2,9	6,0	6,2	8,1	4,4	2,4
Anortita	2,7	6,9	9,6	18,3	18,8	15,7
Clinoenstatita	-	-	1,9	2,5	2,5	2,4
Periclásio	-	-	-	3,5	4,4	4,0
Diópsido	-	-	-	3,6	4,7	4,1
Guelenita	-	-	-	-	9,0	8,3
Espinélio	-	-	-	-	2,2	1,8

Tabela 7. Fases identificadas por difração de raios-X e composição semi-quantitativa.

tamente relacionada com as fases presentes e as características microestruturais e mostram-se coerentes com o trabalho de Yekta⁸ e com os estudos da Sacmi⁹, a respeito dos efeitos da introdução de dolomita em massas de revestimentos.

Conclusões

A composição da massa altera consideravelmente a expansão térmica de revestimentos cerâmicos, pois afeta de maneira direta as reações durante a queima que determinam as fases presentes e a porosidade no produto final.

O controle da retração de queima, bem como da resistência ao choque térmico da massa podem ser feitos com a adição de calcita ou dolomita. Os resultados comprovaram, no entanto, que a adição de calcita é muito mais efetiva em virtude da maior quantidade de carbonato de cálcio que a mesma introduz na massa.

A avaliação da expansão térmica de um material deve levar em conta a curva dilatométrica e não pode ser resumida no coeficiente de expansão térmica até 325 ou 400 °C, como é usual nos meios industriais. Em muitos casos, as curvas são pouco alteradas até esta temperatura, mas sofrem grandes alterações em temperaturas superiores. Para o acordo massa-esmalte é preciso considerar a dilatação até a temperatura equivalente ao acoplamento do vidrado com o suporte (600-700 °C).

Referências Bibliográficas

- MARINO, L.F.B., "Estudo da Expansividade de Revestimentos Cerâmicos Porosos Segundo Composição Mineralógica, Pressão de Compactação e Temperatura de Queima", Dissertação de Mestrado, UFSCar, Nov. 1997.
- MARINO, L.F.B., BOSCHI, A.O., "A Expansão Térmica de Materiais Cerâmicos. Parte I: Introdução, Aplicação e Composição da Massa", Cerâmica Industrial 3, (1-2), 17-21, 1998.

3.

MARINO, L.F.B., BOSCHI, A.O., "A Expansão Térmica de Materiais Cerâmicos. Parte II: Efeitos das Condições de Fabricação", Cerâmica Industrial 3, (3) , 23-33, 1998.

- MARINO, L.F.B., BOSCHI, A.O., "A Expansão Térmica de Materiais Cerâmicos. Parte III: Efeitos da Adição de Calcita", Cerâmica Industrial 3, (4-6), 18-23, 1998.
- 5. KINGERY, W.D., "Introduction to Ceramics", John Wiley and Sons, 2^a Ed., 1976.
- 6. MORREL, R., "Handbook of Properties of Technical & Engineering Ceramics", Part One:"An introduction for the engineer and designer", HMSO, London, 1^aEd.
- 7. FUNCK, J.E., "Designing the optimum firing curve for porcelains", Am.Ceram.SocBull. 62(6), 1982, 632-635.
- YEKTA, B.F.; ALIZADEH, P., "Effect of carbonates on wall tile bodies", The AmCeram.Soc.Bull., vol.75, (5), may 96.
- 9. "Tecnologia de la Fabricacion de Azulejos", Associacion de Tecnicos Ceramicos, Sacmi, Centro Experimental Sacmi.
- AMORÓS, J.L., BLASCO, et.al., "Acuerdo esmaltesoporte (II). Expansión térmica de soportes y esmaltes cerámicos", Tecnica Ceramica, 179, 644-657.
- 11. AHRENS, T.J., "Mineral Physics and Crystallography", ed. 1995, American Geophysical Union.
- BOCH, P.; GLANDUS, J.C., "Porosity effects on mechanical properties of ceramics", Interceram (3), 1984, 37-40; 1983.
- SORREL, C.A., "Phase Analysis", Engineered Materials Handbook", vol.4, "Ceramic Glasses", ASM International, 557-563.
- IBAÑEZ, A.; PENA, P.; SANDOVAL, F., "Modification of the Inert Component in Wall Tile Bodies", Am.Ceram.Soc.Bull., vol.71, n^o11, 1992, 1661-1668.