
NARRATIVE REVIEW

1-12

NARRATIVE REVIEW

ISSN 2965-3681. Copyright© 2025 The authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution 
license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Periop. Anesth. Rep.,2025, v. 3: e00132024. https://doi.org/10.61724/par.e00132024

Key concepts in artificial intelligence for 
anesthesiologists: a literature review
Verônica Neves Fialho Queiroz1,2 , Renata Prôa Dalle Lucca1 , Carolina Ashihara1,2 , 
Ricardo Kenji Nawa1 , Guilherme Alberto Sousa Ribeiro1 , Paulo Victor dos Santos1 , 
Flávio Takaoka1,2 , João Manoel Silva Júnior1 , Maria José Carvalho Carmona3 ,  
Renato Carneiro de Freitas Chaves1,4,5 

1 Hospital Israelita Albert Einstein, São Paulo, SP, Brasil
2 Takaoka Anestesia, São Paulo, SP, Brasil
3 Universidade de São Paulo, São Paulo, SP, Brasil
4 Massachusetts Institute of Technology, Cambridge, MA, United States
5 Hospital Santa Luzia, Luziânia, GO, Brasil

How to cite: Queiroz VNF, Lucca RPD, Ashihara C,  et al. Key concepts in artificial intelligence for anesthesiologists: a literature 
review. Periop. Anesth. Rep. 2025;3:e00132024. https://doi.org/10.61724/par.e00132024

ABSTRACT
Artificial Intelligence (AI) is revolutionizing medical practice across various fields, including 
anesthesiology. Despite its potential, AI adoption in clinical settings faces challenges related to 
data robustness, result interpretation by anesthesiologists, and ethical issues around privacy and 
automated decision-making. This narrative review aims to provide anesthesiologists with an updated 
overview of AI applications in medical practice, empowering them to become active contributors to 
this transformation. With the widespread adoption of electronic health records and the availability 
of large-scale perioperative data, AI applications have rapidly evolved, offering the potential to 
make anesthetic management more personalized, predictive, and preventive. AI applications in 
anesthesiology span the perioperative period, from preoperative planning to postoperative care. 
Recent advances allow AI to assist in interpreting diagnostic tests, predicting complications, real-time 
monitoring, and supporting clinical decision-making. However, for anesthesiologists to use these 
tools effectively, they must possess a foundational understanding of AI, including its terminology, 
algorithms, validation methods, and the ethical and practical limitations of its use. This article seeks 
to guide readers in acquiring the necessary knowledge to become well-informed anesthesiologists 
capable of integrating AI into their practice efficiently. By fostering collaboration and understanding 
between anesthesiologists and AI technologies, we aim to drive meaningful advancements in anesthetic 
practice and improve patient outcomes.
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INTRODUCTION
Artificial intelligence (AI) enables machines to mimic 
human intelligence by learning and adapting actions 
based on past experiences(1). Through algorithms 
and pattern recognition, machines can reason, solve 
problems, recognize objects, infer world states, and 
make decisions. Currently, the decision-making process 
in healthcare is notably inefficient, with areas for 

significant improvement such as poor communication, 
isolated decision-making, and limited access to data(2,3). 
Given this context, there is a growing need for advanced, 
integrated solutions. While there is both optimism about 
AI’s potential to enhance efficiency and decision-making, 
there are also concerns regarding data privacy, ethics, 
and the potential loss of human empathy(2).
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AI has diverse applications in medicine. The adoption of 
electronic health records and large-scale perioperative 
data has made real-time analysis possible, providing 
predictions to support medical decisions(2,4). Anesthesiology 
is a complex specialty, and AI technologies are under 
investigation, with the potential to enhance care by 
making it more personalized, predictive, and preventive(4,5). 
Additionally, AI could improve the quality of perioperative 
and intensive care, pain management, as well as drug 
delivery and discovery(4).

This article aims to guide readers on becoming well-
informed anesthesiologists equipped to use AI tools 
effectively and contribute to developing advanced 
solutions. We explore AI applications in anesthesiology, 
from preoperative planning to postoperative care, 
including exam interpretation, complication prediction, 
real-time monitoring, and clinical decision-making. Key 
advances in machine learning, neural networks, and 
natural language processing are discussed. While AI 
offers significant benefits, it also presents ethical and 
practical challenges, which will be addressed alongside 
future directions for AI in anesthesiology.

DEFINITION OF ARTIFICIAL INTELLIGENCE, 
MACHINE LEARNING, NEURAL NETWORKS 
AND DEEP LEARNING
AI refers to the ability of machines or computational 
systems to perform tasks that typically require human 
intelligence(1). These systems process information, learn 
from it, and make decisions based on that learning.

Machine learning (ML) is the primary AI subtype applied 
in medicine. It uses algorithms and statistical methods 
to enable machines to learn from data without explicit 
programming(4,6). ML aims to generalize predictions for 
specific scenarios by recognizing patterns, extrapolating 
insights, and developing strategies to assist clinical 
decision-making.(6)

The ML algorithm development process involves 
four key steps: 1) preprocessing: preparing data to 
ensure the algorithm can interpret it, 2) exploratory 
data analysis: identifying trends and patterns, often 
used to determine if the statistical approach suits 
the data, 3) model selection and training: crucial for 
aligning hypotheses with future scenarios, and 4) model 
execution and performance evaluation: assessing how 
well the model works.(6) ML algorithms are categorized 
by their learning styles.

Supervised learning

Algorithms learn from labeled examples. Input data 
(e.g., demographics, vital signs) are paired with 
labels (e.g., diabetic or not). The model maps inputs 

to labels to generalize for new examples, requiring 
separate training (70% of data) and testing (30% of 
data) datasets(7,8). Supervised learning remains the 
most widely used ML method in medicine due to its 
predictive capabilities(7,8). For example, Kendale et al.(7) 
conducted a supervised learning study using electronic 
health record data to identify patients who experienced 
postinduction hypotension (mean arterial pressure 
below 55 mmHg).

Unsupervised learning

Algorithms analyze unlabeled data to group similar 
examples. Clustering is a common task that reveals data 
structures and aids exploratory analysis(9). For example, 
Bisgin et al. conducted an unsupervised learning study 
to mine data from Food and Drug Administration drug 
labels, identifying key topics such as adverse events and 
therapeutic applications(9).

Reinforcement learning

The model interacts with an environment, learning 
through trial and error, much like clinicians adjusting 
therapies based on observed outcomes. This approach 
is used in decision-making tasks(10). For example, 
Padmanabhan et al.(10) conduct a reinforcement learning 
study in a simulated model to develop an anesthesia 
controller that adjusted propofol infusion rates based 
on feedback from a patient’s bispectral index and mean 
arterial pressure.

Artificial neural networks (ANNs) are a key subset of 
ML algorithms. An ANN consists of interconnected 
nodes organized in layers that transmit information, 
mimicking biological neurons at synapses(11). The input 
layer receives data, and the output layer provides 
predictions. Adding intermediate layers allows the 
network to extract more complex information. When 
an ANN contains more than three layers, it is termed 
deep learning (DL). DL algorithms, whether supervised 
or unsupervised, excel in tasks like image recognition. 
These algorithms use multiple nonlinear processing 
layers to extract and transform data features(11). Figure 1 
illustrates the relationship between artificial intelligence, 
machine learning, neural networks, and deep learning.

AI IN ANESTHESIOLOGY
Key AI applications in anesthesiology include logistics 
planning, risk stratification, predicting complications 
and adverse events, monitoring anesthetic depth, 
pain management, peripheral blocks, and anesthesia 
automation. Additionally, this article discusses natural 
language processing, ethical considerations, and future 
trends in AI for anesthesiology.
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Logistical optimization in surgery
The trends in perioperative practices of surgical patients 
have evolved over the past decade, influencing how 
logistical optimization in surgery is performed(12,13). 
A retrospective study of over 45,000 surgeries 
demonstrated that ML algorithms outperformed linear 
regression in predicting surgery duration(14). Zhao et al.
(15) tested six ML algorithms using 28 variables and 
observed superior predictive accuracy compared to 
traditional statistical models. Bayesian hierarchical 
modeling enabled operating room usage predictions 
without prior estimates, while artificial neural networks 
predicted surgery duration using real-time data inputs(16).

ML algorithms also outperformed regression techniques 
in forecasting the duration of outpatient surgeries 
starting at varying times and predicting anesthesia 
recovery discharge times(17). Using electronic health 
records, ML algorithms effectively identified candidates 
for outpatient hip and knee arthroplasty(18). Additionally, 
ML shows promise in detecting risk factors for avoidable 
surgical errors, such as wrong-site surgery and retained 
foreign objects, further optimizing surgical logistics(19).

Despite these benefits, however, data variability among 
institutions can significantly limit model generalizability, 
presenting a challenge for applying predictive tools 
uniformly across healthcare settings. Additionally, 
professional resistance to adopting automated systems 
for surgical planning further hinders the integration 
of advanced technologies into clinical practice. These 
challenges highlight the need for standardized data 
collection protocols and focused efforts to foster trust 
in and acceptance of automated solutions.

Preoperative assessment, risk stratification, 
and perioperative complication prediction

Risk stratification and the prediction of perioperative 
complications are critical for improving outcomes(20,21). A 
key component of preanesthetic evaluation is identifying 
patients at risk for difficult airway management(22,23). 
DL algorithms have been used to predict intubation 
difficulty through facial image analysis and lateral cervical 
radiographs(22,23). Another AI application evaluates 
traditional airway difficulty predictors using electronic 
health record data(24). For instance, a retrospective study 
found that cervical circumference and thyromental 
distance were poor standalone predictors of difficult 
airways in patients with limited physical exams(24). Risk 
stratification, central to anesthesiology, supports clinical 
optimization, anesthetic planning, resource allocation, 
and shared decision-making. Traditional scores like 
the ASA physical status classification have been widely 
used. AI has automated ASA classification using 
electronic health record data, and it can analyze complex 
interactions among surgery type, individual risk factors, 
and perioperative data to identify unknown risks(25,26).

In 2019, Bihorac  et  al. introduced “MySurgeryRisk”, 
an ML-based calculator using data from over 50,000 
patients to predict eight severe postoperative 
complications and mortality with an area under the 
ROC curve (AUC) > 0.8(27). By 2022, it performed well in 
real-time predictions for a validation cohort of 19,132 
patients, delivering complication forecasts directly 
to surgeons’ mobile devices(28). Another 2022 study 
involving over 445,000 patients developed an ML-based 
tool that outperformed the Revised Cardiac Risk Index 

Figure 1. Relationship between Artificial Intelligence, Machine Learning, Artificial Neural Networks, and Deep Learning concepts.
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in predicting major adverse cardiac events after hip 
and knee arthroplasty(29). DL algorithms combining pre- 
and intraoperative data demonstrated high accuracy in 
predicting sepsis, cardiovascular complications, acute 
kidney injury, deep vein thrombosis, and mortality.(30, 31)

Cardiac surgery is a complex field characterized by 
the emergence of new technologies and research 
advancements(31, 32). The ML algorithm extreme gradient 
boosting (XGBoost) excelled in forecasting 30-day mortality 
and severe postoperative complications using perioperative 
data(33). ML models also outperformed the APFEL score in 
predicting postoperative nausea and vomiting(35). Delirium 
risk prediction using preoperative electronic health record 
data showed excellent calibration, enabling real-time 
stratification and improved perioperative management(36). 
Finally, ML algorithms integrating patient-specific and 
surgical variables provided personalized preoperative 
estimates for red blood cell transfusion risks, enhancing 
perioperative care planning(37).

Prediction of intraoperative complications
Avoiding hypotension and hypoxemia are critical 
components in preventing complications(38-40). ML 
algorithms and ANNs have demonstrated reliable 
performance in predicting intraoperative hypoxemia in 
real-time, identifying high-risk groups during sedation, 
and determining clinical predictors for hypoxemia(41,42). 
The prediction of intraoperative arterial hypotension 
has also been extensively studied(43,44). Using arterial 
waveform characteristics, an ML algorithm accurately 
predicted intraoperative hypotensive events up to 15 
minutes in advance, leading to the development of the 
Hypotension Prediction Index(43). The index assigns a 
score between 0 and 100, with a threshold of 85 indicating 
imminent hypotension and triggering treatment(43).

In a retrospective analysis of 14,000 patients, a deep 
learning model achieved high accuracy in predicting 
hypotension 5 minutes before its occurrence by 
analyzing invasive blood pressure waveforms, 
electroencephalograms, and electrocardiograms(43). 
Promising results were also observed in a randomized 
trial involving 60 patients, where an ML-derived early 
warning system for intraoperative hypotension reduced 
the mean duration of hypotension compared to standard 
care(44). While these findings underscore the potential 
of AI in predicting intraoperative hypotension and 
hypoxemia, further studies are necessary to validate 
its routine clinical use.

Regarding intraoperative complication prediction, note 
the calculator developed by the American College of 
Surgeons(45). This publicly available tool assesses short-
term postoperative risk and long-term benefits for 
adults eligible for primary bariatric procedures(45). It 
predicts 30-day risk, 1-year BMI projections, and 1-year 

comorbidity remission. The public Calculator is available 
online at https://riskcalculator.facs.org/RiskCalculator/.

Monitoring anesthesia depth
To address the limitations of consciousness monitors 
in extreme ages, external interferences, and certain 
anesthetics, AI-based approaches have been 
proposed. Mirsadeghi et al. used a ML algorithm for 
dimensionality reduction based on linear and nonlinear 
electroencephalogram (EEG) features, achieving better 
accuracy than the bispectral index (BIS) (88.4% vs. 84.2%) 
in discriminating consciousness levels(46). Artificial neural 
networks utilizing multiple EEG features also demonstrated 
a high correlation with BIS in assessing anesthesia depth(47). 

Another study extracted various EEG features to identify 
the optimal subset for a neurofuzzy classification 
algorithm, achieving 92% accuracy in anesthesia depth 
classification(48). Similarly, convolutional neural networks 
showed an accuracy of 83.2% in evaluating anesthesia 
depth(49). Ramaswamy et al.(50) developed and tested four 
ML algorithms capable of real-time sedation prediction by 
combining drug dosage, sex, and age group data. The study 
highlighted the inadequacy of traditional spectrogram 
features for precise sedation level prediction.

A recent DL algorithm based on EEG signals achieved 
97% accuracy in predicting four anesthesia states 
by incorporating spectral, temporal, and fractal EEG 
features(51). Furthermore, ML techniques show promise 
in integrating infusion pump design with neural 
activity, as spectral EEG features can reliably predict 
unconsciousness and monitor GABAergic anesthesia(52).

Pain management
AI offers promising applications in pain management, from 
automatically identifying and stratifying pain intensity 
via facial expression analysis to selecting patients for 
specialized preoperative pain management and developing 
nociception indices and opioid dosage predictions(53,54). 
AI can optimize variables such as drug selection, dosing, 
adverse reaction risk, and identifying patients at risk of 
prolonged opioid use or substance use disorders, making 
it a key area for research and development(8).

A significant advantage of AI in pain management lies in 
its ability to integrate numerous variables into algorithms 
and analyze complex datasets(55). While this technology is 
advancing in research, clinical implementation remains 
limited(8,55,56). In 2015, machine learning algorithms 
effectively predicted postoperative pain on the first day 
after surgery, with the best model incorporating 796 
variables and achieving an AUC of 0.704(55).

In 2018, a support vector machine was developed to 
analyze genetic profiles and predict opioid requirements 
in cancer patients. Although the model did not achieve 
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sufficient accuracy for clinical use, it highlights the 
growing interest and advancements in applying AI to 
pain management(56).

AI in ultrasound and regional blocks
AI-powered ultrasound devices can enhance the 
accuracy of image acquisition and interpretation during 
ultrasound-guided regional anesthesia(57,58). In 2013, 
the first robotic anesthesia system for ultrasound-
guided peripheral nerve blocks in humans, Magellan, 
was introduced. Operated remotely, it achieved a 100% 
success rate(58).

Recently, the food and drug administration (FDA) 
approved the clinical use of an AI-driven ultrasound 
device, ScanNav Anatomy Peripheral Nerve Block, 
which overlays color-coded anatomical structures 
on real-time images(58). This tool helps identify key 
anatomical landmarks before needle insertion for 
regional anesthesia and it is particularly helpful for less 
experienced practitioners(57,58).

AI-enabled ultrasound systems offer potential benefits, 
including reduced risks of adverse events and block 
failures, shorter block procedure times, evaluation of 
gastric content to reduce the risk of pulmonary aspiration, 
and assistance in neuroaxial blocks through automatic 
estimation of epidural space depth, needle insertion 
point, and angulation(57-61). Additionally, these systems 
serve as valuable teaching tools in regional anesthesia. 
While promising, further clinical studies are needed to 
validate their efficacy in routine practice.

Automation in anesthesia
Robotic intubation systems have been developed to 
operate autonomously or via joystick-controlled remote 
operation(62). In 2012, the first robot-assisted orotracheal 
intubation in humans achieved a 91% success rate in 
under one minute(62).

In 2013, Hemmerling et al. demonstrated that a closed-
loop anesthesia system, McSleepy, outperformed manual 
anesthesia management in maintaining target BIS levels 
and analgesia scores(63). McSleepy monitors hypnosis 
depth via EEG, pain through Analgoscore™, and muscle 
relaxation using Phonomyography™, integrating these 
variables into an automated system for drug delivery 
while adapting its performance to biological feedback 
and system errors(64).

Automated closed-loop systems have shown superiority 
over manual approaches in controlling anesthesia depth, 
cardiac output, and protective ventilation, with improved 
neurocognitive recovery in patients over 60(65). These 
systems can also manage total intravenous anesthesia(66), 
fluid infusion(67), and vasoactive drug titration(68), reducing 
propofol usage and keeping patients in therapeutic 

ranges for longer durations(65,66). Fluid management at 
the bedside is a complex task(69-71). Systems enabling 
automation have the potential to deliver more balanced 
fluid administration compared to standard care(67).

Mechanical ventilation is a complex field characterized 
by the emergence of new technologies and research 
advancements(71,72). In mechanical ventilation, 
reinforcement learning has been used to create AI 
algorithms like AIVent, optimizing positive end-expiratory 
pressure (PEEP), oxygen concentration, and tidal volume. 
Retrospective studies suggest AI-assisted ventilation 
decisions may outperform manual adjustments(73). 
AI-assisted anesthesia models are also emerging, with 
algorithms supporting clinicians in determining optimal 
anesthetic dosages during maintenance phases of open 
anesthesia systems(74).

Anesthesia information management systems and 
cognitive anesthesia robots assist in clinical decision-
making by analyzing variables to provide alerts, 
reminders, and treatment suggestions. These systems 
can detect preoperative lab abnormalities, prevent 
communication errors, recommend antibiotic regimens 
intraoperatively, and remind clinicians of redosing 
intervals(75). In postoperative care, cognitive robots 
delivering individualized feedback improved adherence 
to antiemetic prophylaxis protocols by 5.5%(76). 
Additionally, clinical decision support system tools help 
reduce volatile anesthetic consumption, promoting 
sustainable practices(77). In mechanical ventilation, AI aids 
in identifying phenotypes of respiratory pathologies, 
enabling personalized ventilation strategies(78).

Automation in anesthesia faces regulatory hurdles 
related to safety and liability. Robust clinical trials are 
needed to demonstrate benefits in reducing mortality, 
morbidity, and costs. Key advantages include reduced 
anesthesiologist workload and improved maintenance 
of therapeutic targets(65-68).

Natural language processing in anesthesia

AI-based natural language processing (NLP) models, such 
as “ChatGPT” (Generative Pre-trained Transformer, e.g., 
ChatGPT-4), can interpret questions, analyze images, 
and generate human-like responses(79). Developed by 
OpenAI in 2022 (San Francisco, CA, USA), these tools are 
already being used to assist in drafting scientific articles 
in anesthesiology.

Potential applications in surgical patients include 
preoperative planning, intraoperative decision 
support, and postoperative care optimization(79). 
By integrating patient data – such as comorbidities, 
lab results, imaging, and surgical type – NLP 
tools could help design personalized anesthetic 
plans(80). Intraoperatively, ChatGPT might assist in 
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monitoring physiological parameters and flagging 
abnormalities(79). Postoperatively, it could enhance 
communication between patients and healthcare 
teams, support rehabilitation, manage pain, and 
provide health education(79).

However, these tools face ethical challenges, including 
data security, lack of research regulation, risks of data 
fabrication, misinformation, and “hallucinations” – 
errors where the model generates false or irrelevant 
information. Despite these limitations, the collaboration 
potential between AI systems and anesthesiology is 
significant. Proactively exploring its implications now will 

help establish appropriate regulatory frameworks(80). 
Table 1 outlines key AI applications in anesthesiology.

Hallucinations in NLP models pose a significant risk in 
clinical environments, where inaccurate or fabricated 
information can lead to severe consequences for patient 
care. These errors are particularly concerning when 
interpreting complex medical terminology, as NLP models 
may misrepresent or misunderstand technical language, 
generating misleading outputs. Additionally, ambiguity in 
clinical records, caused by inconsistent documentation, 
shorthand, or varying terminologies, further complicates 
the accuracy of automated systems. Addressing these 

Table 1. Key applications and studies on AI in anesthesiology

Use in Anesthesia Application Limitation Consideration References

Surgical logistics

- Predicting surgery 
duration and 

anesthesia recovery 
time

- Selecting 
appropriate patients 

for outpatient surgery
- Identifying risk 

factors for avoidable 
surgical errors

- More studies needed 
to operationalize 

results

- ML approaches: 
optimize surgery 

scheduling, 
professional 

allocation, reduce 
costs, and improve 

safety

Bartek et al.(14)

Zhao et al.(15)

Ganàn-Cardenas et al.
(16)

Jia et al.(18)

Preoperative 
evaluation, risk 
stratification, 

and prediction 
of postoperative 

complications

- Predicting difficult 
airway management
- Automatic detection 

of ASA score
- MySurgeryRisk 
automatic risk 

calculator
- Predicting nausea, 

vomiting, and 
delirium

- Predicting 
transfusion risks

- Accuracy of ASA 
classification may 

be superior in 
patients with multiple 

comorbidities
- Risk calculators 
require further 

validation in clinical 
practice

- AI models for airway 
difficulty prediction 
using facial images 

show high sensitivity 
and specificity

- Cardiac comorbidity 
risk calculators 

outperformed the 
traditional revised 
cardiac risk index

Tavolara et al.(22)

Cho et al.(23)

Zhou et al.(24)

Bihorac et al.(27)

Ren et al.(28)

Shickel et al.(30)

Zhang et al.(33)

Intraoperative 
complications

- Real-time hypoxemia 
prediction

- Identifying high-risk 
hypoxemia groups 

during sedation
- Predicting 

hypotension onset 15 
minutes in advance 
with early warning 

systems

- Prediction tools 
need validation with 

larger participant 
numbers and varied 
clinical settings for 

routine use

- AI can help predict 
30% of hypoxemia 
events and identify 

possible causes
- Early identification 
of patients at risk for 

hypotension

Lundberg et al.(41)

Geng et al.(42)

Jo et al.(43)

Anesthesia depth

- ML algorithms tested 
on EEG features 
outperformed or 

were equivalent to 
BIS in discriminating 
consciousness levels

- Integration of 
anesthesia depth 

monitoring with drug 
infusion systems is 

crucial for anesthesia 
automation

- No suitable 
model for daily 
anesthesiology 

practice

- ML techniques 
show potential for 

integrating infusion 
pumps with patient 

neural activity
- Development of 

this technology could 
be a milestone in 
anesthesiology

Gu et al.(47)

Shalbaf et al.(48)

Madanu et al.(49)

Dutt et al.(51)

Continue...
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Use in Anesthesia Application Limitation Consideration References

Pain management

- Automatic 
identification and 

stratification of pain 
intensity via facial 

expression analysis
- Identifying patients 

who may benefit 
from preoperative 

assessment
- Prediction of 

adverse effects and 
postoperative pain

- No clinically available 
tools or models for 

daily anesthesiology 
practice

- Pain is complex and 
multifactorial

- AI has vast potential 
due to its ability to 
integrate multiple 

variables for complex 
data analysis

- Precise selection of 
drugs and ideal doses

De Sario et al.(53)

Olesen et al.(56)

Ultrasound and 
regional blocks

- AI and ultrasound: 
increased 

effectiveness in 
image acquisition and 

interpretation
- Fully robotic regional 

block
- Neuroaxial blocks: 

epidural space depth 
and needle insertion 

angle calculations

- More studies are 
needed to validate 

benefits and safety in 
clinical practice

- ScanNav Anatomy 
Peripheral Nerve 
Block: First FDA-

approved ultrasound 
with AI

- Reduced risk of 
adverse events, block 
failure, and improved 

procedure speed

Hemmerling et al.(57)

Larkin et al.(58)

In Chan et al.(61)

Anesthesia 
automation

- Robotic orotracheal 
intubation
- Fluid and 

vasopressor infusion
- Closed-loop 

anesthesia systems 
(Mc Sleepy)
- Anesthesia 
automation 

and closed-loop 
systems are crucial 

for the future of 
anesthesiology

- Ethical and 
regulatory issues 

regarding safety and 
responsibility

- No tools available 
that account for 

individual patient 
peculiarities

- Cognitive robots: 
preoperative 
altered exam 

alarms, antibiotic 
administration 

assistance, adherence 
to antiemetic 

protocols, rational 
anesthetic use, 

ventilation strategy 
phenotypes, 

AI-assisted ventilation 
adjustment

Hemmerling et al.(63)

Joosten et al.(65)

Pasin et al.(66)

Joosten et al.(67)

Sng et al.(68)

Ren et al.(74)

Freundlich et al.(75)

Table 1. Continued...

challenges requires robust validation mechanisms, 
improved model transparency, and the integration of 
domain-specific medical knowledge to enhance reliability 
and minimize risks in clinical decision-making.

Accountability for model-related patient harm

The world is experiencing significant transformations 
with the advancement of AI. However, several 
important issues must be thoroughly discussed before 
implementing this technology in real patient care. 
Healthcare organizations and developers must assume 
responsibility for any adverse outcomes caused by biased 
models. Implementing ethical frameworks and legal 
safeguards ensures accountability, while regular audits 
and updates help maintain model reliability and fairness. 
Another critical issue is privacy and informed consent 
regarding the use of data to train AI models. These 
topics remain unclear and require further clarification. 

Key questions include: What policies are necessary to 
prevent model-related patient harm? What measures 
are needed to address privacy issues and ensure proper 
informed consent when using data for AI model training?

FUTURE DIRECTIONS FOR AI IN  
ANESTHESIOLOGY
AI is poised to transform nearly every sector of healthcare, 
including anesthesiology, where it is expected to drive 
advancements in big data, robotics, the internet of things, 
and more. Throughout the surgical patient journey – from 
surgical indication and preoperative evaluation to the 
management of long-term complications – numerous 
opportunities exist to leverage these technologies. 
Operating rooms and intensive care units are particularly 
well-suited for the integration of big data analysis and ML 
due to the vast amounts of patient information processed 
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and stored electronically. These tools have the potential 
to enhance personalized care, clinical decision-making, 
administrative management, and scientific research.

The convergence of technologies and interoperability 
among devices will facilitate integrated data analysis, 
proving especially useful in caring for critically ill 
patients or those undergoing major surgeries. These 
scenarios often demand simultaneous processing 
of extensive data sets, exceeding human cognitive 
capacity for attention, memory, analysis, and evidence-
based decision-making. Interoperable systems will 
also support data modeling, automation studies, and 
advancements in anesthetic practices.

As automation becomes a more significant part of 
anesthetic procedures, the field will see an increase 
in research on automation and its implications for 
anesthesiologists in increasingly high-tech operating 
rooms. The mantra that “data is power” underscores 
the need for anesthesiologists to gain at least basic 
knowledge of data science, including programming 
skills – comparable to learning a new language. If 
medical school curricula fail to incorporate such training, 
residency programs must address this gap, posing 
challenges for educational institutions.

Enhanced surgical risk assessment, personalized 
anesthesia, rapid identification of complications, and 
critical evaluation of outcomes will require basic data 
science skills for formulating relevant questions and 
critically analyzing AI-generated results. Similarly, 
data science can revolutionize education and training 
through digitalized textbooks, AI-powered simulation, 
and virtual tutors. Facial emotion analysis could help 
assess students’ stress adaptation, attention during 
surgery, and overall performance evaluation.

In scientific research, AI can streamline literature 
reviews, enable large-scale observational studies, and 
facilitate the integration of global datasets through 
ML analysis. For randomized trials, AI could aid in site 
selection, patient recruitment, interim and final analyses, 
and comparisons with preliminary findings. These 
capabilities could lead to ongoing updates of meta-
analyses, ensuring their relevance.

Several studies demonstrate strong predictive outcomes 
but lack critical analysis of the models’ reliance on 
retrospective data, which may not yield similar results 
in prospective settings. Additionally, models trained on 
data from specific hospitals or populations are inherently 
at risk of overfitting, limiting their applicability to other 
institutions. To mitigate model biases and enhance real-
world applicability, researchers should use data from 
diverse institutions across various countries.

Advancing AI in anesthesiology requires strong 
multidisciplinary collaboration among anesthesiologists, 

data scientists, and engineers to develop reliable, clinically 
relevant models. Establishing standardized policies for 
validating AI systems before clinical implementation 
is essential to ensure accuracy, safety, and regulatory 
compliance. Additionally, clear frameworks for liability must 
be defined to address responsibility in cases of diagnostic 
errors or complications resulting from AI-generated 
recommendations. Privacy concerns also remain critical, 
with the need of strict data protection measures and 
transparent informed consent protocols for using patient 
data in AI model training. Addressing these challenges will 
be key to safely integrating AI into anesthetic practice while 
maintaining ethical and legal integrity.

AI-driven data science in anesthesiology is likely to spur 
the development of “smart” products, including apps, 
equipment, and interoperable or remotely operated 
devices. These innovations aim to improve patient safety 
and process efficiency while maintaining the critical role 
of a highly trained anesthesiologist.

The future of anesthesiology will undoubtedly be 
increasingly digital, with AI enhancing every aspect of 
practice. However, even in this high-tech landscape, 
these advancements must be harnessed to provide 
more humanistic patient care.
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