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SUMMARY

Copper (Cu) deficiency affects young citrus trees mostly when fertilized with high nitrogen 
(N) rates and under reduced foliar applications of Cu-based fungicides. On the other hand, trees are 
prone to Cu toxicity resulting from excessive applications of fungicides to control foliar and fruit 
diseases in the orchards. Despite Cu present in pesticides is generally found in a water-insoluble 
form, which facilitates the formation of a pathogen protective layer on plant canopy surfaces, 
frequent use of these products causes an increases in Cu concentrations in soils and consequently 
root absorption of the metal. Copper deficiency reduces tree yield capacity by damaging many 
enzyme systems in plants, as well electron transport in the photosynthesis, whereas toxicity causes 
metabolic dysfunctions, mainly by increasing oxidative stress levels. This article summarizes the 
role of Cu nutritional disorders on nutrient status and production of citrus trees, as a basis for fine 
tuning health management of orchards required for superior plant productivity.
Index terms: Citrus, copper-based pesticides, plant nutrition, micronutrient.

O cobre na produção dos Citrus: necessário, porém prescindido

RESUMO

A deficiência de cobre (Cu) afeta plantas jovens de citros, principalmente quando adubadas 
com altas doses de nitrogênio (N) e sob reduzidas aplicações foliares de fungicidas cúpricos. Por outro 
lado, os citros estão sujeitos à toxicidade por Cu devido ao uso excessivo desses fungicidas para o 
controle de doenças foliares e de frutos nos pomares. Apesar do Cu nos fungicidas estar geralmente 
presente na forma insolúvel em água, o que facilita a formação de um filme de proteção contra o 
patógeno na superfície das folhas, o uso frequente desses produtos causa aumento na concentração 
de Cu no solo e consequentemente as raízes passam a absorver o metal. A deficiência de Cu reduz 
a produtividade das plantas por afetar a atividade de diversas enzimas, bem como o transporte de 
elétrons na fotossíntese, enquanto que a toxicidade causa disfunções metabólicas, principalmente 
pelo aumento dos níveis de estresse oxidativo. Este artigo apresenta os efeitos dos distúrbios 
nutricionais causados por Cu no estado nutricional e na produção de plantas cítricas, como base 
para o ajuste do manejo dos pomares de alta produtividade.
Termos de indexação: Citrus, fungicidas cúpricos, nutrição de plantas, micronutriente.
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There is a wide range of copper-based pesticides available 
in agriculture systems, in which the most common forms are 
based on copper hydroxide [Cu(OH)2], copper oxychloride 
(ClCu2H3O3), cupric oxide (CuO), copper sulphate (CuSO4) 
and copper carbonate [Cu2(OH)2CO3] (Leite Junior, 
1990; Gottwald & Timmer, 1995; Orbinovic et al., 2007 
Husak, 2015). These are usually mixed into water to form 
suspensions, in which the insoluble Cu associated with 
adjuvants allows the metal to protect the surface of plant 
parts that can be infected by pathogens.

Although cupric-based pesticides do not present a 
curative or a systemic effect in plants, but a very efficient 
preventive one (Behlau et al., 2008), use of these products 
has increased based on the need to reduce the incidence 
of diseases in citrus orchards. In São Paulo (Brazil) 
and Florida (USA), eradication programs of canker 
symptomatic trees and those around the affected ones were 
revoked (Dewdney & Graham, 2014; Behlau et al., 2016). 
The eradication was considered an important strategy to 
prevent and control citrus canker. Currently, the removal 
of only the symptomatic tree is mandatory, but in São 
Paulo an area with a radius of 30 m has to be sprayed with 
copper-based products that must be repeated for every 
new vegetative flush growth of trees (Behlau et al., 2016). 
However, with the current modification of the referred 
legislation, the incidence of the disease in the São Paulo 
state’s orchards is raising, varying from 0.14% of plots 
contaminated in 2009 to 0.44% in 2010, 0.99% in 2011 
and 1.39% in 2012 (Behlau et al., 2016). Recently, the 
incidence of the disease was estimated in 15% of the plots 
located in São Paulo and south of Minas Gerais states 
(FUNDECITRUS, 2016).

The increment in disease incidence during the last years 
led the requirement to reformulate criteria and procedures 
for establishing and maintaining phytosanitary status for 
the citrus canker in Brazil. The Normative Instruction 
nº 37 was created in September 2016, which regulates 
procedures to reduce potential of inoculum, fruit transit 
permissions in Brazil and exportation abroad (MAPA, 
2016). However, some characteristic of the Brazilian 
citriculture, such as large contiguous citrus grown areas, 
susceptible varieties, favorable climate for disease 
dispersion, as well as occurrence of other diseases, e.g. 
citrus black spot, has likely contributed to the continued 
increase in the use of Cu-based pesticides. Studies have 
shown the importance in reducing the quantity of Cu-based 
products used (Behlau et al., 2010; Scapin et al., 2015; 
Silva Junior et al., 2016), not only because of the high 
cost of treatment applications, but also about avoiding 

INTRODUCTION

Nutritional disorders caused by copper (Cu) frequently 
affects citrus orchards, which can be characterized by 
two scenarios during citrus production: (i) deficiency in 
non-bearing trees grown in low fertility soils that receive 
high doses of nitrogen (N) intended to improve plant 
growth and early fruit yield (Mattos Junior et al., 2010); and 
(ii) toxicity in non-bearing as well bearing trees resulting 
from excessive applications of cupric-based pesticides 
used as preventive control of citrus diseases (Behlau et al., 
2016; Silva Junior et al., 2016). The accumulation of Cu 
in soils resulted from such frequent use of these Cu-based 
pesticides has become a concern not only in citrus orchards 
(Discoll, 2004; Fan et al., 2011), but also in others such 
as grapevines (Martins et al., 2014) and tomatoes grown 
under protected cultivation (Sonmez et al., 2006).

To extend the understanding about the interaction of 
Cu on plant nutritional status and phytosanitary control 
programs, this review describes aspects about either 
Cu deficiency or toxicity affecting citrus production.

Phytosanitary management with copper-based 
pesticides

The copper-based pesticides are among the most 
commonly products used as a preventive control of 
diseases in citrus and many other crops, along with other 
horticultural practices (Adrees et al., 2015; Husak, 2015). 
In citrus, these pesticides are essentials to manage a 
range of diseases, such as citrus canker (Xanthomonas 
axonopodi spv. citri), citrus black spot (Guignardia 
citricarpa Kiely), scab disease (Elsinoe fawcettii), alternaria 
brown spot [Alternaria alternate (Fr.) Kiesler] and post 
bloom fruit drop (Colletotrichum acutatum Simmonds) 
(Bhatia et al., 2003; Laranjeira et al., 2005; Stein et al., 
2007; Hendrix et al., 2013).

The Cu-containing pesticides are sprayed to build up 
a thin layer on tree canopy surfaces (leaves, woody parts, 
flowers and/or fruits) that can prevent pathogens infection. 
Despite Cu is essential to living organisms, when in high 
concentrations it triggers a large number of metabolic 
processes in microorganisms that inhibit infection and 
growth of the pathogen into the plant, resulted from its 
capacity to bind to sulfhydryl groups of protein compounds 
(active site), what then causes inactivation of proteins 
and enzymes and provides degradation of membranes 
and DNA of the pathogen (Noyce et al., 2006).
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Adequate levels of Cu in leaves occur between 
10 to 20 mg kg-1, expressed on the basis of leaf dry 
matter (Mattos Junior  et  al., 2012). With exception 
for the North region, the Brazilian citrus belt regions 
exhibit an expressive amount of leaf samples with leaf 
Cu >20 mg kg-1 (Figure 1). Furthermore, the Center and 
the South regions present the greatest frequency of leaf 
samples with >40 mg kg-1 of Cu, with levels reaching up to 
600 mg kg-1 of this micronutrient. In fact, in bearing trees, 
the phytosanitary management of the orchards is carried 
out based on the disease occurrence, where the amount of 
metal foliar sprayed can reach 30 kg ha-1 yr-1 of Cu, that 
later reaches the soil by leaf run off (Fan et al., 2011).

The increment of Cu levels in soils has been to by 
the greatest levels of the element in leaves (Figure 1). 
Concentrations of Cu in soils >5.0 mg dm-3 of Cu are considered 
high for citrus production (Mattos Junior et al., 2012). 
The  Center  and South regions presented the highest 

the induction of pathogen resistance (Behlau et al., 2013). 
Furthermore, by reducing Cu applications in the groves, 
we may expect to reduce adverse plant damages 
(Hippler et al., 2016) and environmental impacts caused 
by excess Cu in the environment (Fan et al., 2011, 2014).

Copper levels in soil and leaves of citrus 
orchards

An analysis of Cu concentrations in soil (0-20 cm 
soil depth; total of 4,867) and leaves samples (total of 
5,604) collected from bearing citrus orchards in the 
Brazilian citrus belt (São Paulo State and Triângulo 
Mineiro) in 2015 revealed high levels of this micronutrient 
compared to the current interpretation of the results for 
soil (DTPA extraction, Abreu et al., 1997) and leaf (acid 
digestion, Bataglia et al., 1983) analyses (Figure 1).

Figure 1. Soil copper (Cu) (0-20 cm depth layer) and leaf concentration surveys (n > 4000 samples) in citrus orchards 
of the “Brazilian citrus belt” (São Paulo State and Triângulo mineiro). (Map-figure adapted from Fundecitrus, 2016).
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increases the availability of Cu to the new-planted trees 
(Toselli et al., 2009).

Copper deficiency has been verified by the appearance 
of visual symptoms (Mattos Junior et al., 2005), which in 
nursery trees are characterized by the formation of gum 
pockets in new branches resulted from tissue breaking 
down and consequent sap leakage from the xylem and 
phloem vessels (Figure 2A and 2B). Under severe Cu 
deficiency, die-back of stems is observed in trees, of which 
the Westin, a vigorous sweet orange variety, exhibits such 
problem more frequently in the field (Quaggio & Piza 
Junior, 2001). In non-bearing trees, these symptoms are 
characterized by the growth of branches that curve in “S” 
shape, leaf blades excessively developed and protruding 
veins on the underside (Figures  2C  and  2D). These 
observations suggest that growth limitations occur and 
consequently potential maximum production of trees is 
affected. Therefore, information that allows the adequate 
diagnosis of the nutritional status and management 
recommendations for this nutrient in the orchards is still 
lacking.

Such deficiency symptoms are related to the role 
of Cu as a cofactor of polyphenol oxidase enzyme 
that is responsible for the lignification of plant tissues 
(Yruela, 2009). Copper is a nutrient that acts as a cofactor 
for many other enzymes, such as superoxide dismutase 

frequency of soil samples >10 mg dm-3, with values up 
to 23 and 34 mg dm-3, respectively for each region.

In Florida’s orchards (USA), Cu accumulation in soils 
was linked to the age of the citrus groves as well to the 
increase in availability and distribution of the element 
with depth, which were dependent of pH and soil clay 
contents (Fan et al., 2011).

Copper deficiency in the plant nutritional 
status

Copper deficiency has been observed in vigorous 
plants, mainly in non-bearing trees, such as nursery and 
recently planted ones that present high demands for 
the nutrient associated to the supply of high doses of N 
(Mattos Junior et al., 2005, 2010). Copper availability for 
plants depends on pH, mineralogy, redox potential and organic 
matter (OM) of soils (Alva et al., 2000; Mouta et al., 2008). 
For example, the absorption of Cu by roots is limited 
in soils with high levels of OM due to the formation of 
highly stable complexes between this metal and humic 
acid (Toselli et al., 2009; Kalina et al., 2013). On the other 
hand, in replanted orchard areas, OM decomposition 
occurs quickly, due to soil ploughing and tillage what 

Figure 2. Symptoms of copper deficiency in nurseries trees (A) with formation of gum pockets in new branches 
(details in B) resulting from tissue breakdown and sap leakage, and in young trees in the field (C and D) showing 
long and vigorous twigs that grow tortuous. (Photos: adapted from Mattos Jr. et al., 2005).
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plant growth compared to the soil supply. Copper is highly 
adsorbed to soil colloids, then its availability to plants will 
depend on solubility of fertilizer sources, clay and OM 
content of soils (Mouta et al., 2008; Komárek et al., 2009; 
Hippler et al., 2014, 2015). However, there is still a lack 
of information about micronutrient application for woody 
crops, comparing foliar and soil application, as well as, 
fertilizer sources. Utilization of rootstocks less responsive 
to Cu deficiency is also recommended in groves where 
Cu deficiency is more likely to occur (Alva et al., 1993; 
Hippler et al., 2016), e.g. in soils with low fertility or with 
reduced applications of cupric-based pesticides.

On the other hand, under Cu toxicity cultural practices 
are recommended to reduce the metal deleterious effects 
in orchards, such as: i) soil liming increases soil pH and 
consequently reduces the metal availability in the plant 
(Alva et al., 2000; Ambrosini et al., 2015); ii) increase OM 
content in the soil, once the metal has a strong interaction 
with organic compounds, also contributes with the reduction 
of metal availability to plants (Toselli et al., 2009); iii) use of 
tolerant rootstocks (Alva  et  al., 1993; Alva & Chen, 
1995; Mattos Junior et al., 2010; Zambrosi et al., 2013; 
Hippler et al., 2016), mainly in groves to be planted in 
regions with historic of high incidence of citrus diseases, 
such as citrus canker or citrus black spot.

In fact, for both conditions of Cu-stress (deficiency or 
toxicity), a more balanced nutritional status is essential to 
reduce the described metal deleterious effects in plants. 
Despite symptoms of Cu deficiency are induced more 
severely with high levels of N fertilization, when plants 
are prone to toxic levels of this metal, high supply of N 
can improve levels of organic compounds into the plant, 
such as phytochelatins, chaperones and other organic 
compounds that reduce the metal availability and mobility 
inside the plant (Xiong et al., 2006). Furthermore, the 
adequate supply of calcium and/or phosphorous improve 
plant cell integrity reducing either the Cu absorption by 
roots or the damages caused by oxidative stress effects 
(Maksymiec & Baszynski, 1999; Zambrosi et al., 2013; 
Fan et al., 2014).

DIRECTIONS AND PERSPECTIVES

Balanced plant nutritional management along with 
sound phytosanitary managements strategies based in 
cupric fungicides use are essentials to achieve highest 
yields of citrus fruits. However, a better understanding 
about nutrient statuses of plants, horticultural performance 

(Cu/Zn-SOD), cytochrome oxidase, amino oxidase, 
laccase and plastocyanin, besides having an essential 
role in transcription and oxidative phosphorylation 
(Yruela, 2009). Copper deficiency in plants also results 
in reduced electron transport between the photosystems 
because of reduced synthesis of plastocyanin, proteins 
and chlorophylls (Ravet & Pilon, 2013).

The low Cu mobility in the plant phloem (Marschner, 
2012) makes the supply of this nutrient necessary each 
flush of vegetative growth, similarly as observed for 
manganese (Mn) and zinc (Zn) (Boaretto et al., 2003).

Copper toxicity in the plant nutritional status

Excess Cu disturbs biochemical processes and 
causes inhibition of growth or abnormal development 
of plants (Zambrosi  et  al., 2013; Adrees  et  al., 2015; 
Hippler et al., 2016). It also interferes in the biosynthesis 
of the photosynthetic apparatus modifying pigmentation 
and membrane composition, causing oxidative stress due 
to the increased production of toxic oxygen free radicals 
(Yruela, 2009) and hydroxyl radicals (OH-), from the 
Haber-Weiss reaction (Apel & Hirt, 2004). The majority 
of the deleterious effects of Cu on cellular metabolism are 
probably due to the inhibitory effects on several enzymes 
as a result of an irreversible association of Cu2+ at their 
active site (Adrees et al., 2015).

Symptoms of Cu toxicity in Citrus and other woody plants 
are still not clear, although in field conditions symptoms of iron 
(Fe) deficiency as interveinal chlorosis has been associated 
to the metal toxicity (Alva et al., 1993; Alva & Chen, 1995). 
Despite the toxicity of Cu reduces the uptake of Mn 
and Zn by the roots, it does not limit the absorption of 
Fe but reduces the transport of this metal from roots 
to leaves (Hippler  et  al., 2016). It suggests a specific 
interaction among these micronutrients, in which the same 
mechanism that limits Cu transport to the leaves does 
not discriminate Fe. Copper toxicity in the root medium 
disturbs also the uptake and accumulation of other nutrients 
(Mattos Junior et al., 2010; Hippler et al., 2016).

Nutritional and horticultural management to 
alleviate Cu-stress

In order to minimize the occurrence of Cu deficiency in 
non-bearing citrus trees, foliar sprays with soluble sources 
are likely more efficient to supply the micronutrient to 
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of rootstock varieties and other cultural practices that 
contribute to alleviate damages caused by Cu nutritional 
disorders are still required in order to subside maximum 
yield where this nutrient limits plant growth.
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