Oncologic outcomes of microscopic tumor cut-through in locally advanced oral squamous cell carcinoma

Guilherme Reimann Agne1*, Hugo Fontan Kohler1, Thiago Celestino Chulam1, Clóvis Antônio Lopes Pinto2, José Guilherme Vartanian1, Luiz Paulo Kowalski1

Abstract

Introduction: The gold standard treatment of oral cavity squamous cell carcinoma (OCSCC) is surgical resection; however, standardization of the margins and the role of frozen section are still debatable. Microscopic tumor cut-thought (MTCT) occurs when the surgeon has an initial positive frozen section margin that is cleared with further resection to negative. Objective: This study aims to determine the impact of MTCT on local recurrence and disease-specific survival in patients with locally advanced T3-T4 OCSCC and compare it with other clinicopathological variables. Methods: A retrospective database analysis of patients diagnosed with locally advanced T3-T4 OCSCC surgically treated and submitted to intraoperative frozen section guiding the margin status. Survival was analyzed using the Kaplan-Meier estimator followed by the Cox model for multivariate analysis. Results: We analyzed 475 patients who met inclusion criteria: MTCT occurred in 29 patients (6.11%) and local recurrence was observed in 131 patients (27.6%). MTCT had an impact on univariate (HR 2.205; 95% CI 1.243 – 3.914; p=0.007) and multivariate (HR 1.851; 95% CI 1.285 – 2.666; p=0.001) analyses. Similar results were found for disease-specific survival: univariate (HZ 1.669; 95% CI 1.056 – 2.635; p=0.028) and multivariate (HZ 1.307; 95% CI 0.816 – 2.092; p=0.265) analyses. A total of 231 patients (48.6%) had died of cancer by the end of follow-up. The best predictor for compromised frozen sections was tumor depth of invasion. Conclusion: Even after negative final margins, MTCT is an important factor associated with poorer outcome, and treatment intensification should be considered in these patients.

Keywords: mouth neoplasm; frozen sections; margins of excision.

Introduction

The gold standard treatment of oral cavity squamous cell carcinoma (OCSCC) is surgical resection with free margins1-3. Many clinicopathologic variables indicate adjuvant treatment to improve oncologic control. Radiotherapy is recommended for T3-T4 lesions, N2 or N3 nodal disease, perineural invasion,
or vascular invasion1,3-5, whereas chemoradiotherapy is indicated for positive margins and extranodal extension6,7.

The presence of positive final margins establishes worse outcomes, but the concept of clear and close margins is not a consensus in the literature8-10. Most cancer centers use the following pattern of free margins: 1 cm healthy tissue around the tumor on macroscopic evaluation and 0.5 cm on microscopic evaluation11. Intraoperative frozen section is widely used in Head and Neck Surgery to ensure a free margin status in final result12,13. Nevertheless, microscopic tumor cut-through (MTCT) occurs when an intraoperative frozen section margin is positive and is cleared with further resection to negative, and this event could define a worse outcome14. Bulbul et al.15 conducted a meta-analysis of early stage OCSCC and showed that patients with MTCT have a better prognostic than those with positive margins and a worse prognostic than those with negative margins at first resection15. Other studies that include all stages of oral cancer have reported similar results16,17. The real prognostic impact and therapeutic implication of MTCT is still under debate17.

This study aims to determine the impact of MTCT on local recurrence and disease-specific survival in patients with locally advanced OCSCC and compare it with other clinicopathological variables.

Materials and methods

A retrospective analysis of all patients diagnosed with cT3-cT4 OCSCC surgically treated in the aforementioned institution between 1985 and 2015 and submitted to intraoperative frozen section biopsy of surgical margins. The study was approved by the A.C. Camargo Cancer Center research board under no. 2532/18. We excluded patients with positive final margins in the last frozen section or final pathologic examination prior to head and neck cancer treatment. Demographic, clinical, surgical and pathological data of all patients were included in a database.

Statistical analysis was performed using the Stata 15.1 software for MacOS (Stata Corp, College Station, TX – USA). Categorical variables are described as frequency, and continuous variables as mean and standard deviation. Survival was analyzed using the Kaplan-Meier estimator followed by the Cox model for multivariate analysis. The outcomes of interest were local recurrence and disease-specific survival. All tests were two-tailed and statistical significance was considered when the p-value was ≤0.05.

Results

We analyzed 475 consecutive patients: 399 men (84%) and 76 women (16%) aged 20-94 years (mean = 56.2 years, SD ±11.6). The primary tumor was staged as pT3 in 258 patients (54.8%) and pT4a in 213 patients (45.2%). Neck dissection was performed in 468 patients (98.5%). Distribution of pathological neck stage/number of patients (%) was as follows: cNx / seven (1.5%), cN0 / 171 (36.0%), cN1 / 97 (20.4%), cN2a / six (1.3%), cN2b / 22 (4.6%), cN2c / 70 (14.7%), and cN3 / 102 (21.5%). Bone involvement was diagnosed in 72 patients (19.7%),
vascular invasion in 234 (50.6%) and neural invasion in 220 (48.6%). Tumor depth of invasion (DOI) ranged from 10 to 60 mm (median of 14.48 mm).

MTCT occurred in 29 patients (6.1%). Postoperative radiotherapy was used in 312 patients (65.7%). Radiotherapy alone was used in 213 patients (44.8%) and 99 patients (20.8%) underwent concomitant chemoradiation. Radiotherapy alone or associated with chemotherapy were equivalent, and there was no statistically significant difference between them (HR: 1.67; 95% CI: 0.891 - 2.382; p=0.463). Follow-up time ranged from 0.3 to 239.6 months (mean = 46.4 months, SD ±20.7). Local recurrence was diagnosed in 131 patients (27.6%). Univariate analysis showed pT stage, lymphatic invasion, and MTCT as significant factors associated with local recurrence (Table 1). Tumor DOI, perineural invasion, and bone involvement were not significant. In multivariate analysis, vascular invasion and MTCT remained as significant variables (Table 2).

At the end of follow-up, 121 patients (25.5%) were alive with no evidence of disease, 31 patients had complication-related deaths (6.5%), 80 patients had died of other causes (16.8%), 12 patients (2.5%) completed the 1-year follow-up, and 231 patients (48.6%) had died of cancer. Univariate survival analysis with disease-specific survival as the outcome of interest showed pT and pN stages, perineural and vascular invasions, and MTCT as significant variables (Table 3). MTCT was not significant in the multivariate analysis (Table 4).

Table 1. Univariate analysis of local recurrence.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values</th>
<th>HR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT4a</td>
<td>1.425</td>
<td>1.008 – 2.105</td>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>Vascular invasion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.927</td>
<td>1.342 – 2.766</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>MTCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2.205</td>
<td>1.243 – 3.914</td>
<td>0.007</td>
<td></td>
</tr>
</tbody>
</table>

Caption: HR = Hazard Ratio; CI = Confidence Interval; MTCT = Microscopic Tumor Cut-Through.

Table 2. Multivariate analysis of local recurrence.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values</th>
<th>HR</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pT stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pT4a</td>
<td>1.327</td>
<td>0.930 – 1.893</td>
<td>0.119</td>
<td></td>
</tr>
<tr>
<td>Vascular invasion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>2.054</td>
<td>1.152 – 3.663</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>MTCT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>1.851</td>
<td>1.285 – 2.666</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

Caption: HR = Hazard Ratio; CI = Confidence Interval; MTCT = Microscopic Tumor Cut-Through.
The best predictor for positive frozen section is tumor DOI measured as a continuous variable (Figure 1).

Discussion

The values found in our sample for disease-specific survival (DSS) and local recurrence (LR) are similar to those of other studies conducted with similar
populations15-17. MTCT occurred in 6.1% of patients, and its impact on outcome was evident. Both univariate and multivariate analyses presented statistical significance for the presence of a positive frozen section in LR, demonstrating that MTCT is an independent prognostic factor. DSS was statistically valid only in the univariate analysis. Patel et al.17 conducted a similar cohort study with T1-T4 OCSCC patients and found that MTCT occurred in 9.6% of them17. In this same study, the outcome analysis was similar to ours, and the lack of significance in the multivariate analysis for DSS is explained because most cases of MTCT also presented lymph node disease and other compromising factors17.

Relationship between MTCT and worse prognosis has been reported in the literature since 198614. Scholl et al.14 reported worse oncological outcome in these patients and predicted worse biological behavior of tumor as a causal factor14. Currently, the peculiar local dissemination pattern of OCSCC is considered the most significant factor responsible for treatment local failures17,18.

When OCSCC grows in depth, it reaches the musculature, neurovascular bundles, and glandular and areolar tissues. These structures could act as avenues that facilitate locoregional progression18. Thereby, in the present study, we observed that the main factor related to MTCT is tumor DOI, as shown by the ROC curve in Figure 1. This reinforces the hypothesis that MTCT may not be a true surgical tactical error, but that worse outcome results from the presence of a tumor with greater DOI and a more complex invasion pattern17,19.

DOI has been gaining emphasis in the literature19,20. The last TNM staging system (8th edition) included DOI at the “T” status, thus upscaling oral cancer clinical stage20,21. The importance of tumor DOI in contrast to a two-dimensional view of the tumor has motivated some authors to propose the concept of

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{ROC (Receiver Operator Characteristic) curve for compromised surgical margins according to tumor DOI.}
\end{figure}
compartmental resection for tongue and floor of mouth cancer18,19,22. This technique proposes continuous removal of tumor within the musculature of the tongue and the entire area at risk of vascular invasion, perineural invasion, and lymphatic dissemination between primary tumor and neck lymph nodes18,19.

Frozen section analysis is always a reason for discussion, and this technique is far from being standardized11,23-25. An important fact that should be considered is whether resection after a positive frozen section is made in the wrong spot12. Sampling is also controversial in many cancer centers, although most studies have reported benefits in sampling the surgical specimen instead of the patient12. We have standardized frozen section sampling of surgical specimen in our hospital, and the importance of the interaction between the surgical and pathology teams in the analysis of intraoperative margin must be highlighted.

Currently, radiotherapy is not indicated after MTCT1. Patel et al.17 considered, based on subgroup analysis, that in the absence of nodal involvement, MTCT do not present sufficient outcome impact to indicate adjuvant therapy in T1-T2 OCSHC. In this study, 65.7\% of T3-T4 OCSHC patients received adjuvant radiotherapy. The low proportion of patients receiving adjuvant radiotherapy is probably due to the retrospective and old nature of our data, since standardization of adjuvant treatment indication is recent26,27. Nevertheless, no patients received chemoradiotherapy, and this combined adjuvant therapy should be considered in advanced OCSHC cases with MTCT6,7.

Conclusion

The relation between DOI and MTCT indicates tumors with a more complex infiltration pattern, and a more extensive resection should be considered. Even after negative final margins, in this large retrospective series, MTCT is an important predictive factor of poorer OCSHC outcomes. In the absence of a prospective clinical trial, the decision for more aggressive treatment should be considered in an individual basis. In this scenario, we suggest that decision about using adjuvant treatment be discussed in a tumor board to evaluate MTCT together with other prognostic indicators.

References

TUMORS OF LIP AND ORAL CAVITY

Oncologic outcomes of microscopic tumor cut-through in locally advanced oral squamous cell carcinoma

Oncologic outcomes of microscopic tumor cut-through in locally advanced oral squamous cell carcinoma

Authors information
GRA - Head and neck surgeon, PESCOP group; Head and neck surgery resident, A.C. Camargo Cancer Center. HFK - Head and neck surgeon, A.C. Camargo Cancer Center. TCC - PhD in Oncology, Antonio Prudente Foundation; Professor, Head and Neck Surgery Department, Federal University of Espirito Santo (UFES); Head of Prevention in Oncology Department, A.C. Camargo Cancer Center; Head and neck surgeon, A.C. Camargo Cancer Center. CALP - PhD in Sciences, University of São Paulo Medical School (FM-USP); Pathologist, A.C. Camargo Cancer Center. JGV - PhD in Oncology, Antonio Prudente Foundation; Director, Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center; Vice-president, Head and Neck Surgery Society; Head and neck surgeon, A.C. Camargo Cancer Center. LPK - PhD in Otorhinolaryngology, Federal University of São Paulo (UNIFESP); Head of the Reference Center on Head and Neck Tumors, A.C. Camargo Cancer Center; Professor and chairman, Head and Neck Surgery Department, University of São Paulo Medical School (FM-USP); Head and neck surgeon, A.C. Camargo Cancer Center.