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Abstract: Aim: In this study, we present the results of a project which used Landsat Collection 
2 Surface Reflectance data and European Centre for Medium-Range Weather Forecasts (ECMWF) 
Reanalysis v5 (ERA5) data to develop a machine learning model to estimate Secchi depth in Lake 
Yojoa, Honduras. Methods: Satellite remote sensing data obtained within a 7-day window of an in 
situ measurement were matched with in situ Secchi depth measurements and were partitioned into 
train-test-validate data sets for model development. Results: The machine learning model had good 
(R2= 0.57) agreement and reasonable uncertainty (MAE = 0.58 m) between remotely estimated and 
in situ observed Secchi depth. Application of the machine learning model increased the monitoring 
record of Lake Yojoa from 6 years of measured data to a 23-year record. Conclusions: This model 
demonstrates the utility of coordinating in situ sampling schedules of short-term research projects with 
satellite imagery acquisition schedules in order to increase the temporal coverage of remote sensing 
derived estimates of water quality in understudied lakes.  

Keywords: remote sensing; water clarity; water quality trends.

Resumo: Objetivo: Neste estudo, apresentamos os resultados de um projeto que utilizou dados de 
refletância de superfície da Landsat Collection 2 e dados de reanálise v5 (ERA5) do Centro Europeu 
de Previsões Meteorológicas de Médio Prazo (ECMWF) para desenvolver um modelo de aprendizado 
de máquina para estimar a profundidade do disco de Secchi no Lago Yojoa, Honduras. Métodos: 
Os dados de sensoriamento remoto por satélite, obtidos dentro de uma janela de 7 dias de uma 
medição in situ, foram combinados com medições in situ da profundidade de Secchi e particionados 
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Remote sensing work across Latin America 
demonstrates how using satellite imagery can 
support data collection in data scarce tropical 
regions (Melack et al., 2009; Flores-Anderson et al., 
2020; Lucia Lobo et al., 2021). Here, we present 
the results from a project where we used remote 
sensing and climate data to estimate Secchi depth 
in Lake Yojoa, Honduras for Landsat 7 and 8 
imagery. This work exemplifies how coordinating 
discrete sampling campaigns (Fadum & Hall, 2022; 
Fadum et al., 2023, 2024) with satellite acquisition 
schedules provides an opportunity to create data 
products which extend beyond the duration of 
shorter studies. Below, we 1) briefly describe our 
approach to creating Landsat-in situ matches and 
our machine learning model approach, and 2) 
highlight the model’s ability to add to the historical 
record and capture ecologically relevant changes in 
Secchi depth. Beyond the collection of remotely 
sensed data and the development of ecosystem 
monitoring tools like the described Secchi depth 
model, the goal of this work is to encourage similar 
limited-term research projects to consider sampling 
in accordance with satellite image acquisition 
schedules. In addition to enabling the creation 
of ecosystem specific algorithms with improved 
regional accuracy (as opposed to applying temperate 
models to tropical ecosystems), this approach will 
also support the more accurate assessments of 
uncertainty for algorithms developed at a broader 
regional or global scale.

2. Material and Methods

Lake Yojoa is a large (~83 km2 surface area, ~30 
m maximum depth) mesotrophic, tropical lake in 
West-Central Honduras with a contemporary mean 
annual Secchi depth of 3.1 m and well described 
intra-annual dynamics (Fadum & Hall, 2022; 
Fadum et al., 2024). We collected Secchi depth 
measurements from 18 pelagic locations (twice 
annual sampling of the 18 locations, identified as 
A-R in Fadum & Hall (2022) and sampling every 16 

1. Introduction

Remote sensing of water quality has great 
potential for expanding our understanding of inland 
waters (Topp et al., 2020). For lake ecosystems, 
remote sensing provides an opportunity to have 
spatially rich water quality predictions, avoiding 
some bias from limited spatial coverage associated 
with in situ data collection (Stanley et al., 2019; 
Pahlevan et al., 2020). With reliable algorithms 
that convert surface reflectance to water quality 
estimates, remote sensing enables regional and 
global change analyses at an unprecedented spatial 
scale (Yang et al., 2022; Sillen et al., 2024). Remote 
sensing can also improve the temporal coverage of 
lake ecosystem research by adding estimates on 
additional dates during in situ campaigns and by 
providing estimates of historic conditions predating 
contemporary monitoring efforts (i.e., hindcasting, 
Hansen et al., 2020). Remotely sensed estimates of 
in situ parameters also have the potential to fill in 
large geospatial data gaps necessary for reducing 
monitoring inequities and addressing challenges in 
global data disparities.

While there are numerous advantages to 
optical remote sensing, leveraging historical 
datasets in locations with frequent cloud cover is 
challenging since optical sensors do not penetrate 
cloud cover. Still, in most regions, the rich spatial 
and temporal coverage provided by remote 
sensing has the potential to accurately capture 
the hydrologic and ecological variation observed 
in the field (Allen et al., 2020). This expansive 
coverage of remotely sensed water quality allows for 
explorations of both long-term trends and seasonal 
changes in lakes (Topp et al., 2021). Identifying 
such trends is particularly critical because changes 
in intra-annual variance is an indicator of regime 
shifts, ecological thresholds and transition points, 
such as eutrophication (Carpenter & Brock, 2006; 
Carpenter et al., 2011; Gilarranz et al., 2022).

em conjuntos de treinamento, teste e validação para o desenvolvimento do modelo. Resultados: O 
modelo de aprendizado de máquina apresentou boa concordância (R2 = 0,57) e incerteza razoável 
(MAE = 0,58 m) entre as estimativas remotas da profundidade de Secchi e as observações in situ. 
A aplicação do modelo de aprendizado de máquina ampliou o registro de monitoramento do Lago 
Yojoa, de 6 anos de dados medidos para um total de 23 anos. Conclusões: Este modelo demonstra 
a utilidade de coordenar cronogramas de amostragem in situ de projetos de pesquisa de curto prazo 
com cronogramas de aquisição de imagens de satélite, aumentando assim a cobertura temporal de 
estimativas derivadas de sensoriamento remoto da qualidade da água em lagos pouco estudados.  

Palavras-chave: sensoriamento remoto; transparência da água; tendências de qualidade da água.
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days at a subset of five locations, identified as B, E, 
F, P and R in Fadum et al. (2023) concurrent with 
the Landsat 7 and 8 imagery acquisition schedules 
(Figure 1). To identify sampling dates, we used the 
Landsat Acquisition tool (https://landsat.usgs.gov/
landsat_acq).

Landsat Collection 2 Surface Reflectance 
(Masek et al., 2006; Vermote et al., 2016) values 
were obtained for the 18 sampling locations in Lake 
Yojoa following the methods described in Topp et al. 
(2021). Minor adaptations were made for the 
transition from Collection 1 (used in Topp et al. 
(2021)) to Collection 2 to account for differences 
in scaling factors between collections. Surface 
reflectance summaries included only ‘confident’ 
water pixels as defined by the dynamic surface 
water extent algorithm (Jones, 2019). Data were 
filtered for reasonable values for water reflectance 
(-0.01 < surface reflectance < 0.2) for all bands. 
Inter-mission handoff coefficients to standardize 
surface reflectance values due to slight changes in 
sensors specifications and atmospheric correction 
methods between missions (Gardner et al., 2021) 
were calculated based on data acquired from all 
lakes greater than 25 hectares within Guatemala, 
Honduras, and El Salvador using Python version 
3.8 (Python Software Foundation, https://www.
python.org/). Precipitation, air temperature, solar 
radiation, and wind speed at the approximate 
geographical center of Lake Yojoa (14.8768°N, 
87.9791°W, Figure 1) were obtained from the 
ERA5 dataset (Muñoz Sabater, 2019) in the Google 
Earth Engine Code Editor (Gorelick et al., 2017). 
These data were aggregated for the previous 3, 5, 
and 7 days of a satellite acquisition date for model 
development and application (Kloiber et al., 2002). 
For our model, a previous day and previous 5-day 
window for pairing meteorological data to satellite 
imagery yielded the best results. Windows for 
pairing in situ Secchi depth measurements and 
available satellite imagery were similarly assessed 
and we determined that a 7-day matchup window 
was appropriate, except in October and November 
(when rapid water column turnover is expected). 
For acquisition days in October and November, 
only a 1-day window was permitted. While 
alternative models with slightly different matchup 
windows yielded moderately higher coefficients of 
determination, the selected model performed best at 
higher Secchi depths, a point of focus for the region 
(Fadum et al., 2023). All Landsat data were acquired 
using the Google Earth Engine Python Application 
Programming Interface (Gorelick et al., 2017) in 

RStudio version 2023.03.0, R version 4.2.3 (R Core 
Team, 2023), ERA5 data were obtained within the 
GEE Code Editor, and all data collation and model 
development were completed in RStudio.

We used the R package xgboost (Chen et al., 
2023) to develop the best performing gradient 
tree boost algorithm for this application. We used 
a random 60%/20%/20% train-test-validation 
split for model development, where the train and 
test sets were provided for model development 
and the validation was performed with hold-out 
data to test performance independently of model 
development (Figure 2). To select the optimal 
xgboost hyperparameters, we used a grid search 
method partitioning the top 20 performing models 
as measured by lowest RMSE. From these models, 
we selected the booster that had the lowest RMSE 
and a train-test RMSE that was within 0.15 m to 
avoid selecting an overfit model. If no models met 
these conditions the one with the closest train-test 
RMSE was selected as the optimal xgboost model. 
We evaluated model performance based on root 
mean square error (RMSE), mean absolute error 
(MAE), mean absolute percentage error (MAPE), 
bias, and symmetric mean absolute percentage error 
(SMAPE).

3. Results

Our results demonstrate that optical remote 
sensing offers a viable tool for monitoring Secchi 
depth in Lake Yojoa, Honduras. Our model (RMSE 
= 0.78 m, MAE = 0.58 m, MAPE = 0.22, Bias = 
-0.31 m, SMAPE = 0.19) produced comparable 
estimates of Secchi depth in the validation (hold-
out) dataset (R2 = 0.57, inclusive all locations, 
Figure 2) and we achieved a comparable RMSE to 
other studies which used passive remote sensing to 
estimate Secchi depth (R2 = 0.89, RMSE = 0.77 
m Alikas & Kratzer (2017), and R2 = 0.97, RMSE 
= 0.26 m Majozi et al. (2014)) though weaker 
coefficient of determination.

After creating a location-specific algorithm for 
estimating Secchi depth from remote sensing in 
situ pairs for Lake Yojoa, we created a timeseries 
from the full remote sensing record using the same 
algorithm (Figure 3). While early Landsat data 
is limited due to a lack of international ground 
receiving stations (U.S. Geological Survey, 2016; 
Wulder et al., 2016), application of the model 
increased the Secchi depth record from limited 
observations in 2006 and 2018-2022 to a more 
complete record from 2000-2022. While other 
studies (e.g. Topp et al., 2021), use the full Landsat 
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record, including Landsat 5, we explicitly chose not 
to include predictions from either Landsat 5 or 9, 
because we had no matchup data to robustly test 
algorithm performance with these satellites. Early 
record Secchi depth predictions are limited by 
cloud-contaminated images despite a 16-day return 
frequency for Landsat 7. The increased density of 
modeled Secchi depth beginning in 2013 is due to 
Landsat 8 deployment which runs co-currently with 
Landsat 7, separated by 8 days resulting in a virtual 
8-day return frequency. In situ sampling in 2006 
occurred every 3-10 days at the geographic center 
of Lake Yojoa (Basterrechea, 2008) which differs 

from the sampling frequency beginning in 2018 
which was bi-monthly. Additionally, sampling was 
disrupted in 2020 due to the COVID-19 pandemic 
resulting in fewer Secchi depth observations.

Our model captured ecologically meaningful 
changes in Secchi depth, and subsequently trophic 
state (Fadum & Hall, 2022), as exhibited by the 
model’s ability to detect the documented increases 
in water clarity following Hurricanes Eta and Iota 
(Fadum et al., 2023) (Figure 3). These two large, late 
season tropical cyclones brought an unprecedented 
amount of precipitation to the Lake Yojoa watershed 
in November 2020. The rapid introduction of 
nutrient depleted water into Lake Yojoa in the 
subsequent weeks produced a dilution effect which 
decreased algal productivity and therefore increased 
Secchi depth above the annual mean. It is possible 
that the back-to-back timing of Hurricanes Stan and 
Beta in 2005 were responsible for a similar dilution 
effect as Hurricanes Eta and Iota (Figure 3). Other 
tropical cyclone events showed little or no effect on 
the clarity of Lake Yojoa (e.g., Tropical Depression 
Barry in 2013) and some tropical cyclone events had 
too little data before/after to assess whether there was 
any change (e.g., Tropical Depression 16, Tropical 
Storm Ida). While we could not identify any other 
distinct tropical cyclone impacts in Lake Yojoa, the 
differing impact of back-to-back late season storms 
compared with more isolated incidents of extreme 
precipitation highlights the need to further explore 
characteristics of tropical cyclones which maximally 
impact ecosystem function in low-latitude lakes.

Figure 1. In situ sampling points covering bi-annual sampling events (white circles) and bi-monthly sampling points 
(red triangles). The asterisk (*) identifies the geographic center of Lake Yojoa used to obtain data from ERA5. Exact 
latitudes and longitudes available in Steele et al. (2023).

Figure 2. Model performance as observed versus 
predicted of hold-out data (randomly selected 20% of 
dataset). Black line is the 1:1 line.
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4. Discussion

The approach we demonstrate here offers a 
promising tool for understanding inter- and intra-

annual variation, and stochastic climatic events such 
as the impacts of tropical cyclones on understudied 
tropical freshwater resources. Tropical storms can 

Figure 3. Complete synthetic timeseries of Secchi depth from estimations at center of Lake Yojoa (identified with 
an asterisk in Figure 1) using remote sensing (squares) and in situ observations (black circles). Large rainfall events 
identified with vertical dashed lines and the name of the tropical cyclone(s).
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have devastating impacts on aquatic ecosystems and 
by extension, water security. Assessing the response 
of ecosystems to storms of varying intensities is of 
critical importance to local communities impacted 
by increasingly frequent and intense hurricane 
activity in the Atlantic basin (Morris et al., 2002; 
Bender et al., 2010; Knutson et al., 2010).

In addition to understanding ecosystem 
disturbance response in Lake Yojoa, aligning routine 
sampling with satellite image acquisition schedules 
could increase our understanding of tropical lake 
ecology more broadly. Future work could build 
a larger matchup dataset including data not just 
from Lake Yojoa but from other lakes within the 
region to create a more generalizable model. The 
presented work could then be collated with both 
existing and new studies to create a rich collection 
of remotely sensed data across Latin American 
lakes within the region, expanding on efforts such 
as AlgaeMAP which currently includes reservoirs 
in and around São Paulo, Brazil (Lucia Lobo et al., 
2021). For example, Lakes Zirahuén (Mexico), 
Atitlán (Guatemala) and Nicaragua have all been 
the focus of previous remote sensing of trophic 
state and water quality research (Chang et al., 2017; 
Flores-Anderson et al., 2020; Pantoja et al., 2021).

While we would expect some lakes to carry 
unique spectral signatures that may impact the 
generalizability of a regional or continental model, 
understanding the broad regional patterns will 
help identify key aspects of the underlying ecology 
of individual lakes to better separate the impacts 
of global and local stressors. For example, Lake 
Atitlán, which was assessed using the Hyperion 
satellite (Flores-Anderson et al., 2020), may have 
similar spectral characteristics as Lake Yojoa during 
the stratified water column season (summer) 
because Lyngbya robusta, a non-heterocyst forming 
cyanobacteria, is a dominant lineage in the June 
epilimnion in Lake Yojoa (Fadum et al., 2024) and 
dominates summer algal blooms in Lake Atitlán 
as well (Rejmánková et al., 2011; Komárek et al., 
2013). Collating in situ and spectral data products 
for those two lakes over the past 20 years may allow 
for an estimation of the broad impact of climate 
that is separate from the regional impact of land use 
(i.e., distinguishing between local/watershed drivers 
and global/climatic drivers of ecosystem change). 
To further generalize a model to estimate Secchi 
depth throughout other lakes within the region 
will require collaboration amongst disperse research 
efforts in tropical lake ecosystems with varying 
spectral signatures. However, continued remote 

sensing applications in tropical lakes may provide 
novel insights into intra-annual ecosystem dynamics 
and inter-annual trends and help to close the gap in 
remotely sensed data between Brazilian reservoirs 
and tropical inland waters at higher latitudes 
(Watanabe et al., 2015; Watanabe et al., 2018, 2019; 
Cairo et al., 2020; Pompêo et al., 2021).

We have demonstrated how remotely sensed 
data can be used to expand the temporal coverage of 
research efforts in understudied lakes, such as Lake 
Yojoa. Moreover, this work exemplifies how monitoring 
schedules that align with satellite acquisition days create 
an additional opportunity to invest in data availability 
beyond the duration of a single study through the value 
of providing data to local communities, stakeholders, 
and managers. This type of data production, sharing, 
and accessibility made possible through remote sensing 
is an important component of environmental justice 
and may be particularly impactful when paired with 
interactive platforms and data viewers (Weigand et al., 
2019; Sayyed et al., 2024). Possible outcomes of 
increasing efforts to pair remote sensing data with 
concurrent monitoring work in low-latitude lakes 
include increased tropical research, increased access 
to monitoring technologies, improved understanding 
of the interactive and distinct impacts of local and 
global change, reduction of barriers to data-driven 
management practices, and increased environmental 
justice through data availability.
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