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Abstract: Aim: The study investigated functional groups representing reservoirs of different trophic 
states, identifying eutrophication indicators. Methods: Water samples were collected to evaluate 
physical and chemical characteristics and the phytoplankton composition in five reservoirs during 
dry and rainy periods. Results: Low concentration of dissolved nutrients (nitrite, orthophosphate, 
and total dissolved phosphorus) and total phosphorus described the oligotrophic and mesotrophic 
reservoirs, and the opposite for the eutrophic and hypertrophic reservoirs. Twenty-four functional 
groups were identified, eight of which were considered descriptors due to high biomass. Functional 
groups were influenced by the trophic state, and secondarily by seasonality. Typical functional groups 
represented the hypertrophic, eutrophic, and mesotrophic reservoirs. However, an oligotrophic 
reservoir was represented by a functional group commonly associated with environmental eutrophic. 
Conclusions: The functional groups were representative of the trophic state of systems and detected 
signs of early eutrophication. 

Keywords: Brazil; eutrophication; environmental factors; functional classification.

Resumo: Objetivo: O estudo investigou grupos funcionais representativos de reservatórios com 
diferentes estados tróficos e avaliou a ocorrência dos que indicassem eutrofização. Métodos: Amostras 
de água de cinco reservatórios foram coletadas para avaliar as características físicas e químicas e a 
composição do fitoplâncton durante os períodos de seca e chuva. Resultados: Baixas concentrações 
de nutrientes dissolvidos (nitrito, ortofosfato e fósforo total dissolvido) e fósforo total descreveram 
os reservatórios oligotrófico e mesotrófico; e o oposto para os reservatórios eutrófico e hipertrófico. 
Vinte e quatro grupos funcionais foram identificados, oito dos quais foram considerados descritores 
de reservatório devido à alta biomassa. Os grupos funcionais foram influenciados pelo estado trófico 
e, secundariamente, pela sazonalidade. Grupos funcionais típicos representaram os reservatórios 
hipertrófico, eutrófico e mesotrófico. No entanto, o reservatório oligotrófico foi representado por 
um grupo funcional comumente associado à eutrofia ambiental. Conclusões: Os grupos funcionais 
foram representativos do estado trófico dos sistemas e detectaram sinais de eutrofização precoce. 
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allows a better understanding of phytoplankton 
variations to environmental changes (Burliga, 
2010). This approach represents a necessary 
tool for understanding species-environment 
relationships (Salmaso & Padisák, 2007). Based on 
this perspective, we evaluated the representativeness 
of the functional group’s ‘sensu’ Reynolds approaches 
across a trophic gradient of five tropical reservoirs. 
We specifically evaluated the relationship between 
the functional groups and the reservoir trophy, 
aiming at identifying trophy indicators. This 
study seeks to understand the functional groups 
responses face the nutrient availability, allowing a 
better understanding of the phytoplankton variation 
regarding the environmental changes. Based on the 
prediction potential of functional groups reported in 
the literature (e.g. Kruk et al., 2021; Crossetti et al., 
2019) and in a previous study (Oliveira et al., 2020) 
we predict that functional groups may indicate 
signs of eutrophication in environments with low 
nutrient availability

2. Material and Methods

2.1. Study area

Phytoplankton of five reservoirs of the Mid 
Tietê/Sorocaba watershed, São Paulo, Brazil was 
evaluated (Figure 1). Selected reservoirs included 
a trophic gradient ranging from oligotrophic 
to hypertrophic, as follows: Barra Bonita 
(hypertrophic), Hedberg (eutrophic), Ipaneminha 
and Itupararanga (mesotrophic), and Santa Helena 
(oligotrophic). The trophic state of reservoirs was 
based on literature (Lucinda, 2003; Buzelli & 
Cunha-Santino, 2013; SAAE, 2013; CETESB, 
2013; Oliveira et al., 2020). The summary of the 
main features of the five reservoirs studied is shown 
on table  1. Study area is in a region of tropical 
climate characterized by two seasonal periods, rainy 
(October to March) and dry (April to September) 
(Conti & Furlan, 2008).

2.2. Sampling and variables

Water and phytoplankton samples were gathered 
at different sampling stations of five reservoirs with 
different trophic states during the dry and rainy 
periods of 2014. Three or five sites were sampled 
in each reservoir (Barra Bonita 5 sites, Itupararanga 
5, Hedberg 3, Ipaneminha 3 and Santa Helena 
3 sites), totaling 19 sampling sites. Sampling sites 
were selected considering the main tributaries input, 
the reservoir deepest region, and the dam region.

Water samples for identification of physical and 
chemical characteristics were collected with a van 

1. Introduction

Phytoplankton is a diverse group of organisms 
presenting different characteristics and adaptive 
strategies that influence its ability to withstand 
environmental disturbances (Hu  et  al., 2013). 
Consequently, understanding phytoplankton 
dynamics is an important tool for understanding 
freshwater ecology. Phytoplankton classification into 
functional groups has been significant in helping to 
understand the relationships between structural and 
functional properties of the freshwater enviromment 
(Salmaso & Padisák, 2007). The functional group 
is composed of organisms that share ecological 
traits and attributes related to the environmental 
characteristics of lakes and reservoirs (Cunha & 
Calijuri, 2011). In addition, grouping species 
based on their functional attributes may provide a 
clear characterization of the habitat (Salmaso et al., 
2015).

The ecological classification of functional 
groups proposed by Reynolds et al. (2002) assemble 
phytoplankton populations into associations based 
on morphometry, phenology, physiology, ecology, 
trophic state, and affinities that allow species to live 
in each environment. The paper by Padisák et al. 
(2009) updated the Reynolds functional groups 
and included new groups, consolidating the 
classification. There are 41 codons according to 
the functional groups approach, and two ideas 
support the functional theory: (1) functionally 
well-adapted species may more successfully tolerate 
restrictive conditions of nutritional deficiency 
than less-adapted species; and (2) a habitat limited 
by some factor may probably be inhabited by 
species with adequate adaptations to survive there, 
however, do not imply that the species will be there 
(Padisák et al., 2009). Phytoplankton classification 
based on the functional approach assembles 
parameters or indicator characteristics capable of 
representing the environment (Bomfim et al., 2019). 
In addition, the functional approach may describe 
the phytoplankton community spatial variations 
and assess its ecological status (Kosten et al., 2012).

Classification of functional groups is been 
used worldwide in ecological studies of freshwater 
phytoplankton and applied to different types of 
environments (Aquino et al., 2018). The relationship 
between phytoplankton and trophy has been 
successfully applied in tropical (Silva & Costa, 
2015; Bortolini et al., 2016; Santana et al., 2017) 
and temperate environments (Gallego et al., 2012). 
The functional approach, due to having groups that 
respond and tolerate environmental conditions, 
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Dorn bottle at the subsurface. Water temperature, 
pH, electric conductivity, and dissolved oxygen 
(DO) were measured ‘in situ’ using a Horiba 
U50 multiparameter probe. Thermal profile was 
obtained at the deepest sampling station of each 
reservoir. Water transparency was measured with 
a Secchi disc (Cole, 1992). The following variables 
were also measured: nitrite, nitrate, ammonium, 
orthophosphate, total dissolved phosphorus (TDP), 
total nitrogen (TN), total phosphorus (TP) (APHA, 
2012). Water samples for determination of dissolved 
nutrients were filtered under low pressure through 
glass fiber filters (GF/F Whatman). Chlorophyll-a 
concentration (phaeophytin corrected) was 
determined by the 90% ethanol method (Sartory 
& Grobbelaar, 1984). Chlorophyll-a and TP 
concentrations of the reservoir subsurface were used 
to calculate the Trophic State Index (TSI) proposed 
by Carlson (1977) modified by Lamparelli (2004).

Phytoplankton was collected with a van 
Dorn bottle at different depths (subsurface, 
mean depth and ± 1 m above the sediments), 
and the samples were integrated. Samples for 
identification of diatom species were oxidized 
using hydrogen peroxide (35-40%) heated (ECS, 
2003) and mounted as permanent slides using 
Naphrax (RI = 1.74). All other phytoplankton 
groups were identified using binocular optical 
microscope (Zeiss Axioskop 2), and specialized 
literature for the species level identification. 
Quantitative analysis of phytoplankton was 
performed under the inverted microscope (Zeiss 
Axio Observer D1, 400x magnification) according 
to Utermöhl (1958). Phytoplankton biovolume 
was calculated (μm3 ml-1 → mm-3 L-1) according to 
Hillebrand et al. (1999). Assignment of species to 
functional groups followed Reynolds et al. (2002) 
and Padisák  et  al. (2009). Abundant functional 

Figure 1. Location of the five reservoirs. Gray area represents the hydrographic basin presently studied (original by 
Oliveira et al., 2020).

Table 1. Morphometric, hydrological characteristics and classification of the trophic state of the studied reservoirs.
Reservoir Construction year Maximum volume (106m3) Area (km2) Trophic state

Barra Bonita 1964 3160 310 Hypertrophic
Hedberg 1911 0.5 0.13 Eutrophic

Ipaneminha 1976 0.2 0.15 Mesotrophic
Itupararanga 1912 302 30 Mesotrophic
Santa Helena 1938 1.84 0.38 Oligotrophic

Modified from Oliveira et al. (2020).
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groups were the ones with above average community 
biomass, and dominant those with values exceeding 
50% of total biomass and were calculated separately 
for each reservoir.

2.3. Data analysis

Two-way permutational multivariate variance 
analysis (two-way PERMANOVA; α = 0.05) was 
used to investigate differences in the composition of 
phytoplankton functional groups between dry and 
rainy periods and between reservoirs with different 
trophic states. This analysis was performed using 
Bray-Curtis’ similarity and PAST 3.01 statistical 
software (Hammer et al., 2001).

Considering the trophic state and seasonality as 
factors, the relationship between the phytoplankton 
total biomass (response variable) and environmental 
predictors (temperature, NH4-N, TP, free CO2, 
HCO3, Secchi disk) was regressed by a Generalized 
Linear Model (GLM; MINITAB® Release 14.12.0). 
GLM residuals were examined. Redundancy analysis 
(RDA) was used to evaluate the relationships 
of environmental variables and phytoplankton 
functional groups. This analysis was chosen 
because the species ordination by Detrended 
Correspondence Analysis (DCA) showed that the 
gradient length was < 2.0, consequently indicating 
linearity in the relationship between environmental 
variables and phytoplankton functional groups. 
For the RDA environmental matrix, the six 
variables (Temperature, TN, TP, TDP, NH4-N) were 
selected based on the correlation with axes 1 and 
2 of the Principal Component Analysis (PCA). 
RDA was performed using covariance matrix with 
log transformed data (x + 1) and accomplished using 
the PC-ORD 6.0 program (McCune & Mefford, 
2006).

3. Results

3.1. Abiotic variables

Based on the Trophic State Index (TSI), 
reservoirs studied were classified oligotrophic to 
hypertrophic. Santa Helena reservoir was classified 
oligotrophic, Ipaneminha and Itupararanga 
mesotrophic, Hedberg eutrophic, and Barra Bonita 
hypertrophic. The oligo and mesotrophic reservoirs 
were characterized by low dissolved nutrients 
(nitrite, orthophosphate, and total dissolved 
phosphorus) and TP concentrations compared to 
the eutrophic and hypertrophic reservoirs. However, 
high TN and ammonium concentrations, as well 
as high conductivity were depicted. In opposition, 
the eutrophic and hypertrophic reservoirs were 

characterized by high concentrations of dissolved 
and total nitrogen and phosphorus. Nutrient 
availability showed temporal variation in which 
the highest values ​​were recorded in the dry period. 
Thermal stratification was identified only for the 
mesotrophic reservoir (Itupararanga) during the 
rainy period near by the dam. Environmental data 
for all five reservoirs are available in table 2.

3.2. Phytoplankton

The trophic state had significant effect on 
phytoplankton total biomass (GLM: F = 3.01; p = 
0.040; Figures  2a-b). In the GLM, the variance 
explained was 81.21% (corrected R2 = 66.89%) 
and TP and HCO3 (p > 0.003) were the main 
predictors of biomass changes. In the GLM, 
66.89% of the variance in phytoplankton total 
biomass was explained by only (P < 0.001). 
Considering all reservoirs, 154 phytoplankton taxa 
were identified and distributed in 24 functional 
groups. Eight out of the 24 functional groups 
were considered reservoir descriptors due to their 
total biomass contribution: B, H1, LM, M, MP, 
P, T and W1. Group M (Microcystis aeruginosa) 
was dominant at the hypertrophic reservoir 
during the rainy period, and groups LM (Ceratium 
furcoides) and P (Aulacoseira granulata) were 
abundant in the dry period. Functional group 
H1 (Dolichospermum solitarium) was dominant at 
the eutrophic reservoir during the rainy period, and 
groups MP (Oscillatoria tenuis) and LM (Ceratium 
furcoides) were abundant in the dry period. At the 
mesotrophic reservoir Ipaneminha, abundance 
of functional groups B (Discostella stelligera) and 
W1 (Euglena granulata and Lepocinclis acus var. 
longissima) were observed during both the rainy 
and the dry periods. The other mesotrophic 
reservoir Itupararanga showed dominance of the 
functional group T (Mougeotia sp.) during the 
rainy period, whereas groups T (Mougeotia sp.) and 
H1 (Dolichospermum solitarium) were abundant in 
the dry period. The oligotrophic reservoir Santa 
Helena exhibited dominance of the H1 group 
(Dolichospermum solitarium) during both sampled 
climatic periods (Figure 2c-d).

Phytoplankton functional groups were significantly 
different among reservoirs (two-way PERMANOVA: 
F = 3.39; p = 0.0001) and climatic periods (two-way 
PERMANOVA: F = 3.73; p = 0.0001).

RDA was performed for 6 abiotic variables 
and 24 phytoplankton functional groups 
(Figure  3). The eigenvalues for axes 1 (λ = 
0.17) and 2 (λ = 0.08) explained 41% of the 
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total variability. The high species-environment 
correlation for axes 1 (r = 0.86) and 2 (r = 
0.81) indicated a strong relationship between 
functional groups distribution and environmental 

variables. Monte Carlo randomization test 
showed that the first two axes were interpretable 
(p = 0.001). Correlation showed that TN and 
TDP were the most important variables for axis 

Figure 2. Total biomass (a: rainy period; b: dry period) and respective relative biomass of the abundant and dominant 
phytoplankton functional groups ‘sensu’ Reynolds (c: rainy period; d: dry period).

Figure 3. RDA of the phytoplankton functional groups and five environmental variables in reservoirs of different 
trophic states. FG with a correlation greater than 0.5 was presented. Abbreviations: the first two characters indicate the 
reservoir studied, two numbers indicate the sampling point and the last letter indicates the climatic period (r, rainy;d, 
dry) Temp = water temperature; TN = total nitrogen; TP = total phosphorus; TDP = total dissolved phosphorus; 
NH4 = ammonium. Correlation of functional groups with axes 1 and 2 is shown in Table 3.
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1 ordering (r > 0.8). First ordering axis represents 
the trophic gradient, showing that reservoirs 
with higher trophic states were associated with 
higher nutrient concentrations. On the positive 
side of axis 1, oligo and mesotrophic reservoirs 
were correlated with low nutrient concentrations, 
mainly associated with functional groups H1, 
T and W2 (r > 0.5). On the negative side, 
eutrophic and hypertrophic reservoirs correlated 
with the highest nutrient concentrations. Last 
reservoirs were mainly associated with functional 
groups B, M and MP (r > -0.5). The second 
ordination axis represented seasonality, water 
temperature being the most important variable 
for the axis ordering (r > 0.8), and there was 
a clear separation of dry and rainy periods for 
the hypertrophic and mesotrophic Itupararanga 
reservoirs. In contrast, eutrophic, mesotrophic 
Ipaneminha and oligotrophic reservoirs did not 
separate seasonally.

4. Discussion

Current results showed that phytoplankton 
functional groups were mainly driven by the 
reservoir trophic gradient, as demonstrated by 
the RDA ordination analysis. Differences in 
nutrient concentrations allowed the presence of 
distinct functional groups. Moreover, functional 
groups were also influenced by seasonality, and 
water temperature was the forcing function for 
the changes in abundance. Similar results were 
observed in several studies carried out for tropical 
reservoirs (Becker  et  al., 2010; Bortolini  et  al., 
2014; Souza et al., 2018), indicating that nutrient 
availability and temporal dynamics are determinant 
factors for phytoplankton functional groups.

Abundant and dominant phytoplankton 
functional groups were associated with the trophic 
state of reservoirs studied. For the hypertrophic 
reservoir, functional group M was representative of 

the trophic condition in both climatic periods, as 
mentioned in the literature (Reynolds et al., 2002) 
and observed for tropical reservoirs (Gemelgo et al., 
2009). Although M group may grow in a range of 
environmental conditions (Kruk & Segura, 2012), 
it seems related to enriched environments (Paerl & 
Otten, 2013). Functional group M is represented 
by species that have specialized traits (e.g. mucilage, 
aerotopes and heterocytes) related to competition 
for nutrients, light, and temperature (Kosten et al., 
2012) as the dominant species in the present study, 
Microcystis aeruginosa. Furthermore, MP and P 
groups were also representative of the hypertrophic 
reservoir, as they are composed of species that 
tolerate high trophy (Lobo et al., 2018).

Functional groups present in the eutrophic 
reservoir were representative of the system trophic 
degree. In this reservoir, H1 group was dominant 
during the high temperature period (rainy 
season), being a common group in the eutrophic 
environments (Souza et al., 2018), and that could 
be used as an environmental indicator in the 
tropical region (Gemelgo et al., 2009). In the dry 
period, MP and LM groups contributed to biomass 
at the eutrophic reservoir and, according to the 
literature, both have broad trophic tolerance and 
represent environments with low to high nutrient 
concentration (Padisák  et  al., 2009). Current 
study representative species of LM group, Ceratium 
furcoides is considered an invasive species in 
continental aquatic environments in South America 
(Silva et al., 2012; Crossetti et al., 2019) and shows 
easy adaptation to different ecological conditions. 
Due to its high dispersal and establishment capacity, 
the species has been recorded in several Brazilian 
reservoirs (Dias & Tucci 2020). In the reservoir in 
question, the species C. furoides greatly tolerated the 
nutrient limitation, since it may also be mixotrophic 
or be able to use its motility to avoid light restriction 
and search for nutrients in the deeper, usually more 
nutrient rich areas (Reynolds, 1998; Crossetti et al., 
2019). Reynolds et al. (2002) included C. furcoides 
in the LM group, the species being coexistent with 
Microcystis aeruginosa. In the present reservoir, such 
coexistence was detected. Therefore, phytoplankton 
in the hypertrophic and eutrophic reservoirs 
presented functional groups characteristic of their 
trophic conditions.

Mesotrophic reservoirs included functional 
groups that represented the system trophic state. 
Ipaneminha mesotrophic reservoir showed an 
abundance of group B, which consists of species 
that efficiently compete under nutrient enrichment 

Table 3. Pearson’s correlation of phytoplankton species 
with scores (r > 0.5) of RDA axes 1 and 2.

Functional 
group Axis 1 Axis 2

B 0.56 0.00
D 0.47 0.52
F 0.51 0.21

H1 0.70 0.11
LM 0.35 0.54
M 0.63 0.61

MP 0.70 0.21
T 0.74 0.62

W2 0.55 0.29
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conditions, and are usually associated with mixed 
environments (Padisák et al., 2009). This group is 
most represented by centric diatoms (Padisák et al., 
2009), as was currently observed during the 
isothermal period. Having silica-impregnated cell 
wall and high sedimentation rate, these organisms 
need water column mixing to maintain their biomass 
(Stević et al., 2013). Group W1 was also abundant 
at the Ipaneminha mesotrophic reservoir, which 
was favored under conditions of high concentration 
of decaying organic matter commonly observed 
in shallow environments (Reynolds et al., 2002). 
At both climatic periods, the also mesotrophic 
Itupararanga reservoir exhibited dominance of 
functional group T. According to Reynolds et al. 
(2002), group T is sensitive to nutritional deficits, 
tolerant to low light intensity, and associated with 
mesotrophic condition. In the present study, the 
only representative of group T was Mougeotia sp., 
which presented high biomass to form bloom in the 
rainy season. Mougeotia species can grow in systems 
ranging from oligo to eutrophic, and at various pH 
levels (Graham et al., 1996). The occurrence of this 
genus was already related with trophic changes in 
temperate lakes, where the species development 
was associated with the first signs of eutrophication 
(Tapolczai  et  al., 2015). Mougeotia was already 
recorded thriving under meso-eutrophic conditions, 
such as at Lake Kinneret in Israel (Zohary et al., 
2019). Furthermore, it is one of the most common 
bloom-forming algae in acidic waters of Europe 
and North America and considered an acidification 
indicator (Graham et  al., 1996). Therefore, both 
current mesotrophic reservoirs included functional 
groups characteristic of the environment based on 
the literature. Nevertheless, presence of Mougeotia 
sp. in the Itupararanga reservoir may be indicative 
of some eutrophication process, as observed in a 
previous study (Oliveira et al., 2020).

Unlike previous reservoirs, the oligotrophic 
Santa Helena presented dominance of functional 
group H1 in both sampling periods, a group 
typical of eutrophic environments. This group 
was the main representative of the eutrophic 
reservoir Hedberg, which is consistent with the 
most recent literature on functional classification 
(Padisák et al., 2009). The problem is the species 
Dolichospermum solitarium, that was classified in 
group H2 associated, according to Reynolds et al. 
(2002), with oligo-mesotrophic environments 
and good light conditions, but due to its frequent 
occurrence in eutrophic-hypertrophic environments, 
it was classified in group H1 by Padisák et al. (2009). 

Studies reported the occurrence of D. solitarium 
in tropical and temperate lakes and reservoirs 
with high nutrient availability (Hu  et  al., 2013; 
Bortolini  et  al., 2014). Despite the reservoir is 
classified oligotrophic by the TSI, it has high 
concentrations of total nitrogen, ammonium, and 
high conductivity, suggesting a possible increase in 
the trophic state, which can explain the dominance 
of the H1 group.

In summary, the high biomass of groups T 
(Mougeotia) at the Itupararanga mesotrophic 
reservoir and the H1 group (D. solitarium) at 
the oligotrophic reservoir evidenced the systems’ 
vulnerability, which may very quickly change their 
trophic states if under anthropogenic disturbance 
pressure. Studied reservoirs are inserted in a 
highly impacted watershed (IPT, 2008), however, 
still including oligo and mesotrophic reservoirs. 
Nevertheless, functional groups present results 
indicated that such reservoirs must have started 
some eutrophication process. In a previous study, 
this outcome was also suggested by the presence of 
a guild associated with high nutrient availability 
(Oliveira  et  al., 2020). We therefore, concluded 
evidenced that nutrient availability was the driving 
force for the phytoplankton functional groups in the 
trophic gradient. Our findings likewise evidenced 
that the functional groups were representative of 
the trophic status of the tropical reservoirs and 
showed signs of eutrophication onset. According 
to our prediction, the functional groups exhibited 
indications of the onset of the eutrophication 
process in environments with low nutrient 
availability, thereby highlighting the predictive 
capability of phytoplankton.
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