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Abstract

For processes concerning attribute data with (very) small failure rate p, often negative binomial control charts are 
used. The decision whether to stop or continue is made each time r failures have occurred, for some r ≥1. Finding the 
optimal r for detecting a given increase of p first requires alignment of the charts in terms of in-control behavior. In 
the present paper binomial charts are subjected to this same requirement. Subsequent study reveals that the resulting 
charts are quite attractive in several aspects, such as detection power. For the case of unknown p, an estimated 
version of the chart is derived and studied.
Keywords
Statistical process control. Health care monitoring. Geometric charts. Average run length. Estimated parameters.

1. Introduction and motivation 

Due to continuing efforts to raise production 
standards, the occurrence of high-quality processes 
in industrial production becomes more and more 
common. Another area where (very) small fractions 
of defectives are typical is that of health care 
monitoring. Failures like malfunctioning equipment, 
surgical errors or recurrence of cancer, should by 
their very nature be avoided as much as possible and 
thus occur only very rarely. Some review papers in 
this latter field are Sonesson and Bock (2003), Thor 
et al.(2007), Shaha (1995) and Woodall (2006). In 
such references, the use of control charts to improve 
and maintain quality, is strongly advocated.

Traditionally the way to monitor attribute data 
is to apply a p-chart: consider a fixed number of 
incoming items or patients and give a signal if the 
number of defectives is too high. However, quite a 
few authors have argued that for really small failure 
probability p it is preferable to use so-called time-
between-events charts. Essentially these are based 
on waiting times till r (r ≥ 1) failures have occurred. 
A signal then follows if the corresponding negative 
binomial random variable (r.v.) X attains a value 
which is judged to be too small. See Albers (2010) 
for extensive references on such geometric (r = 1) 
and negative binomial charts. In this latter paper, a 
more detailed analysis of these charts is presented, 

allowing in particular determining which choice of 
r is best for a given configuration of underlying 
parameters. Moreover, the important problem is 
tackled how to deal with the fact that p is typically 
unknown and thus has to be estimated. Simple 
corrections are derived which control the estimation 
effects.

While performing this analysis, yet another 
interesting question arises, and this we will address 
in the present paper. The above mentioned too small 
value of the negative binomial X simply means that 
X ≤ n, for some suitably chosen lower limit n. But 
one could argue that it is in fact a waste of (waiting) 
time to continue after such a point n, all the way till 
the rth failure has occurred, i.e. to obtain the actual 
realization x of X. It seems sufficient to just check at 
this time n whether at least r failures have occurred. 
If so, give a signal; if not, do not continue till x, 
but start again right away. Note that in this way we 
are in fact back at the binomial p-chart: consider 
a given number n of items or patients and give a 
signal if this group contains r or more defectives. 
Otherwise, look at the next batch of size n.

It might seem that this argument makes the 
time-between-events charts superfluous after all. 
Fortunately, matters are less straightforward and 
several reasons can be given to keep using such 
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charts as well. First of all, convenience is an aspect 
to take into account. In monitoring, it can be 
quite natural to use the occurrence of defectives as 
alerts. As soon as r of these have been registered, 
the corresponding x is obtained and compared to 
the lower limit n. Another advantage is that this r 
does not depend on the, usually unknown, p: one 
just picks some attractive value like 3 or 5 (ALBERS, 
2010) for guidance, e.g. a simple rule of thumb). 
On the other hand, it is intuitively clear (details 
follow in later sections) that the lower limit n does 
depend on p. This makes the binomial chart already 
less straightforward: the batch size here may be a 
fixed number, but only after the relevant p has been 
chosen (and usually estimated).

However, the main complication is of a more 
technical nature. Restarting each time at point n, 
rather than waiting for the realization x, means 
that typically much smaller groups of items are 
used before the next instant occurs at which we 
decide whether or not to stop. But making a fair 
comparison requires that still the same Average Run 
Length (ARL) during in-control has to be realized. 
To achieve this for such smaller groups thus implies 
that the False Alarm Rate (FAR) has to be lowered 
considerably as well. Hence comparison of the two 
types of charts is more complicated than it might 
seem at first glance and thus certainly not simply 
a matter of the negative binomial charts typically 
‘wasting’ (x-n) observations at each step.

In passing, note that several of the remarks 
above also apply when comparing to charts of 
CUSUM-type (cf. Woodall (2006)). These accumulate 
the information over time and thus will typically 
be more efficient. However, such charts definitely 
are more complicated to apply. In particular, the 
important issue of the impact of estimation and 
how to deal with that, remains largely unsolved. 
Hence the (negative) binomial charts can be viewed 
as robust alternatives. 

Consequently, we shall study the properties of 
the binomial chart in the present paper. Fortunately, 
the techniques involved will be similar to those 
from the negative binomial case in Albers (2010), 
so we will be quite brief here. In section 2 we study 
the situation during in-control. The out-of-control 
behavior is the subject of section 3. In section 4, 
the estimated version of the chart is treated. The 
conclusions are presented in section 5. Here the 
implementation of the chart is summarized as well. 
Finally, to facilitate independent reading, the proofs 
of two lemmas from Albers (2010) are reproduced 
in an Appendix.

2. The binomial chart

Consider a sequence D1, D2, … of independent 
identically distributed (i.i.d.) random variables (r.v.’s) 
with P (D1=1) = 1 - P (D1=0) = p, where p is small 
(e.g. p ≤ 0.01). This models the monitoring situation 
during in-control. At some unknown point, however, 
matters may change and the process goes out-of-
control. This we model by subsequently replacing 
p by θp, for some θ > 1. The idea of course is to 
detect such a change as quickly as possible. The 
time-between-events approach tries to achieve this 
by considering a new sequence X1, X2,..., based on 
D1, D2, …. Here X1 is the number of Di observed 
when the rth nonconforming item occurs, for some 
given r ≥ 1. Likewise, X2 is the next number of Di 
required to obtain r failures, etc. Clearly, these Xi 
are i.i.d. copies of a negative binomial r.v. Xr,p such 
that Template de Figuras - Produção
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where k = r, r + 1,.... If no confusion is likely, we 
simply write X instead of Xr,p.

A signal is in order whenever an Xi is too small, 
i.e. falls below a suitably chosen lower limit n. To 
achieve fairness in comparing the charts for various 
r, it seems reasonable to choose this n = nr such that 
during in-control FAR = P(X ≤ n) = rα, for some 
suitably chosen small α > 0 (e.g. between 0.001 
and 0.01). In this way the ARL (measured in terms 
of numbers of failures) will equal r/FAR = 1/α for all 
r. In other words, increasing r means using longer 
stretches between the subsequent opportunities 
for stopping. This is then simply balanced by 
proportionally increasing the corresponding FAR. 
Hence for the negative binomial chart we arrive at 

( )1 α–
r ,p r ,pn n F r= = 	 (2.2)

where Fr,p denotes the negative binomial distribution 
function (d.f.) and Fr,p

–1 its inverse. (Either use 
standard interpolation in (2.2) or let n be the 
largest integer such that Fr,p(n) ≤ rα; in practice the 
differences involved will be negligible.)

Instead of measuring ARL in terms of numbers 
of failures, we can of course equivalently base it 
on the numbers of items inspected. As EX = 1/p, 
it is immediate that for the negative binomial case 
ARL = ARLX = 1/α will be replaced by ARLD = 1/(αp). 
Note that this result readily allows us to make 
the step to the binomial charts mentioned in the 
introduction. As discussed, these charts do not 
continue till the realization x, but decide whether 
to stop straight away at the lower limit n itself. 
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Nevertheless, for fairness’ sake, such charts should 
also satisfy the requirement that ARLD = 1/(αp) for 
all r. Only in this way it makes sense to compare 
these new charts, both among themselves for 
varying r, as well as to the negative binomial charts. 
In the new situation, the number of items between 
two inspection moments has changed from an 
expected value r/p to a fixed value n. Consequently, 
the value of n to be used for the binomial chart has 
to satisfy.

( )≤ = αr ,pP X n np 	 (2.3)

in order to produce the required 
ARLD = n/(npα) = 1/(pα). 

Next observe that the old n from (2.2) solved 
P(Xr,p ≤ n) = rα, which already led to an outcome 
considerably smaller than EXr,p = r/p. Hence if this 
rα is replaced by the smaller npα, as happens in 
(2.3), the resulting new n will even be smaller than 
before. Consequently, the decision to look at shorter 
intervals (not the full x, but just n) leads to an even 
further shortening, because of the need to align the 
ARL’s for the purpose of fair comparison.

Another observation is that the result from 
(2.3) is less explicit than the one from (2.2): now 
we need to solve n from Fr,p(n) = npα. Of course, 
even the n from (2.2) is less explicit than it may 
seem: merely a numerical answer follows, e.g. 
by using Maple. In Albers (2010) it was already 
argued that such numerical outcomes are not very 
enlightening for the purpose of understanding 
how n varies as a function of r, α and p. For that 
purpose, the derivation of approximations which 
are both accurate and transparent, is much more 
useful and this task was performed in Albers (2010). 
Fortunately, after minor modifications, these results 
can be used here as well. The following well-known 
relations are used:

( ) ( ) ( ) ( )        r ,p r ,p n,p np F n P X n  P Y r P Z r= ≤ = ≥ ≈ ≥ 	(2.4)

where Yn,p is a binomial r.v. with parameters n 
and p, while Znp is a Poisson r.v. with parameter 
λ  = np and the latter step in (2.4) assumes n to 
be large. Incidentally, observe that from comparison 
of (2.3) and (2.4) it is immediate that the present 
binomial chart can also be simply characterized 
by the requirement that P (Yn,p ≥ r) = npα. Hence 
the formulation using a negative binomial r.v. in 
(2.3) could be avoided. The obvious reason to 
nevertheless use it here is the convenient link to the 
already covered negative binomial charts. 

Together (2.3) and (2.4) show that for large n 
we have as a first approximation step 

   r ,pn n / p= ≈ λ 	 (2.5)

where λ is such that P (Zλ ≥ r ) = λα.The second step 
consists of finding an appropriate approximation 
λ  for λ. Since in the negative binomial case this 
task was already performed for P (Zλ ≥ r ) = rα, it 
is hardly surprising that virtually the same method 
can be used here. Hence to avoid repetition, we just 
present the result, after a brief explanatory remark 
on the underlying steps. The first of these entails 

replacing ( ) ( )2 by r
j rP Z r P Z j+

λ λ=≥ =∑ , invoking a 
result from Klar (2000), which shows that the error 
involved is sufficiently small. A third order Taylor 
expansion w.r.t. λ, followed by a suitable inversion 
step then readily produces:

Lemma 2.1. Let αr = (r!α)1/(r-1), then λ such that 
P (Zλ ≥ r ) = λα can be approximated for p ≤ 0.01, 
3 ≤ r ≤ 6 and α ≤ 0.01 by

( )2

2 2 2 2

  1     1
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~
r r r r

r

), with r / (r –

½ r( r r ) / {(r ) (r )}

λ = α + ζ ζ = α

+ α + + − +
	 (2.6)

Proof. See the Appendix: Lemma 2.1 from 
Albers (2010).

Hence in addition to the exact result for n from 
(2.3) we now have, in view of (2.5) and Lemma 2.1, 
the approximation

~~n /p= λ 	 (2.7)

with λ  as given in (2.6). 
Remark. The choice for the region 3 ≤ r ≤ 6 

in Lemma 2.1 is explained as follows. Clearly, αr 

increases sharply in r for given α. Consequently, n 
will be large for r ≥ 3, which means that the error 
due to the Poisson step will indeed be small for all 
p involved. As concerns the values below 3, for r =1 
an exact solution of (2.3) can easily be found by 
looking at 1 – (1– p)n = npα directly. Unfortunately, 
this only produces the useless root n ≈ 1/(pα), and 
thus no counterpart of the geometric chart exists. 
(For r >1, the equation P (Zλ ≥ r ) = λα has two roots, 
from which we obviously need the smaller one, and 
not the second, very large one, which indeed ≈ 
1/α). For r = 2, a refinement of (2.6) can be derived, 
using binomial, rather than Poisson probabilities. 
However, as larger r are more interesting anyhow, 
this does not seem worth bothering. As concerns 
the upper end, values of r > 6 could be considered 
as well, but on practical grounds there seems to 
be little need to go beyond this value (also see 
optimality considerations later on.)

While using the Poisson step, the actual value of 
p (as long as it is at most 0.01), plays almost no role 
as far as the approximation quality is concerned and 
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in studying the behavior of the binomial chart we 
can focus on comparing λ  from (2.6) for various 
(α,r) to the ‘exact’ λ* = np, with n as in (2.3). In 
Table1 below some illustrative values are collected.

The conclusions from Table 1 completely 
parallel those from table 1 from Albers (2010): the 
approximation is fine, with decreasing accuracy as 
rα increases (and thus for small α like 0.001, values 
of r > 6 can be considered as well). This is hardly 
surprising, as a result for (r,α) from the present 
Table produces a λ such that P (Zλ ≥ r ) = r α , with 
α  = (λ/r)α. E.g., the choice (r,α)= (5,0.005) gives 
λ = 1.11, which corresponds to (r, α ) = (5,0.00111). 
Indeed from Albers (2008) we have for (5,0.001) 
that λ = 1.08. 

More interesting is the observation that 
the present λ for given (r,α) are close to the 
negative binomial ones for (r–1,α). Indeed, 
solving P (Zλ ≥ r ) = λα means finding λ such that 

( ) ( ) ( )( ){ }1
111 1 jr j

kjexp / r ! / r k r ,∞−
==−λ λ − + λ ∏ + = α∑

 
while solving P (Zλ ≥ r-1) = (r-1)α requires λ such that 

( ) ( ) ( )( ){ } ( )1
111 1 1 1jr j

kjexp / r ! / r k r .∞−
==−λ λ − + λ ∏ + − = − α∑

 
The latter value is slightly smaller, while the 
relative difference between the two decreases 
in r. Yet another way to see this is by noting from 
Lemma 2.1 that αr+1 = (r!(r+1)α)1/r, which is slightly 
larger than (r!rα)1/r, the αr for the negative binomial 
case. Likewise, the coefficient of the leading term 
of ζr+1 (cf. (2.6)) is (r+1)/{r(r+2)}, which slightly 
exceeds 1/(r+1), the corresponding coefficient of 
the negative binomial ζr from Albers (2010). Hence, 
roughly speaking, we can use one and the same 
value of n in two ways: either check at n whether 
at least r failures have occurred and stop or restart 
right away, or wait with deciding between stopping 
and restarting till r-1 failures have occurred and 
check whether this has happened within n steps. 
To conclude the section we provide an explicit 
example.

Example 2.1. Suppose we choose α = 0.005. 
If for the binomial chart we want to check after 
n observations whether at least r = 5 failures have 
occurred, Table 1 gives λ = 1.11 (or λ  =1.08). 
Hence for e.g. p = 0.001 we have that n =1110 

(or ñ = 1080), which indeed is substantially smaller 
than the expected value 5000 for the time of the 
fifth failure. From Table 1 in Albers (2010) we find 
for α = 0.005 and r = 4 that λ =1.02 (or λ  =1.00), 
and thus that the somewhat smaller n = 1020 (or 
ñ = 1000) can be used as the lower limit for the 
negative binomial chart that pauses after each 4th 

failure.

3. The out-of-control situation

At some unknown point in the sequence D1, D2, …, 
the process may go out-of-control and p = P(Di =1) 
is replaced by θp for some θ > 1. In Albers (2010) 
it was argued that a region like 3/2 ≤ θ ≤ 4 is of 
interest, and here we will typically stick to this 
choice. During out-of-control the probability of a 
signal is given by Fr,θp(n), and therefore

( )X r , pARL ARL np/F nθ= = 	 (3.1)

Note that the scale we are using here is again 
the number of failures, which will make it easier 
to compare the results to the previously obtained 
ones for the negative binomial case. If desired, the 
transition from this ARLX to ARLD = n/Fr,θp(n) is of 
course immediate. For all charts, ARL decreases from 
1/α (cf. (2.3)) for θ = 1 to np for θ =1/p. As λ = np 
increases in r, for very large θ it is clearly better to 
take small r. Just as in section 2, results in (3.1) can 
be obtained numerically, but again it is much more 
illuminating to apply a suitable approximation. 
Following Albers (2010) we obtain 

Lemma 3.1. The exact ARL from (3.1) can be 
approximated for p ≤ 0.01, 3 ≤ r ≤ 6, α ≤ 0.01 and 
3/2 ≤ θ ≤ 4 by

( ) 1

1 1

1 1

~ ~ ~
r , r r  

r–
r r r

A R L A R L / { – exp(– )[

... ( – ) / (r – )!]}  
θ= = λ θα + θα +

+ θα θα ζ
	 (3.2)

with λ , αr and ζr as in (2.6).
Proof. See the Appendix 1: Lemma 3.1 from 

Albers (2010). The only changes are again the 
region of values r considered (cf. Lemma 2.1) and 
the different λ , αr and ζr.

Table 1. Comparison of the approximation λ  from (2.6) to λ*= np with n as in (2.3) for various α and r. The first value is λ*; 
the second one is λ .

a/r 3 4 5 6

0.001 0.081 0.080 0.315 0.313 0.679 0.674 1.14 1.12
0.005 0.187 0.186 0.576 0.570 1.11 1.08 1.73 1.67
0.01 0.272 0.270 0.760 0.749 1.39 1.35 2.12 2.00
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Just as in Albers (2010), the approximation is 
again quite satisfactory in the area considered in 
Lemma 3.1, with decreasing quality as rα increases. 
Hence, to avoid repetition, we just list in Table 2 
some illustrative values of the exact ARL’s for this 
region, without bothering to accompany these for 3 
≤ r ≤ 6 by the (close) approximate values from (3.2). 

From Table 2 it is clear that also for the binomial 
charts increasing r leads to large improvements. More 
importantly, by comparing the values obtained here 
to those from table 2 in Albers (2010), we see that 
the present results are consistently better than the 
corresponding negative binomial ones. Especially for 
larger r and α the relative difference is substantial. 
This reflects the fact that in the binomial case ARL 
eventually decreases to λ, whereas the negative 
binomial chart has r as a lower boundary for its 
ARL. Of course, the improvement is not accidental: 
we have that

Lemma 3.2. For θ > 1, the ratio k = k (θ,λ) 
= P (Zλ ≥ r )/P (Zθλ ≥ r ) increases in λ.

Proof. Since ∂{P (Zθλ ≥ r )}/∂λ = rP (Zθλ = r )/λ, it 
follows that ∂k/∂λ = r{P (Zλ = r )P (Zθλ ≥ r ) - P (Zλ ≥ r)
P (Zθλ = r )}/{λ P 2(Zθλ ≥ r )}. This is indeed positive, 
as {P (Zλ = r )P(Zθλ ≥ r ) - P (Zλ ≥ r ) P (Zθλ  =  r )} 
=  P (Zλ = r )P (Zθλ = r ){[1+Σ∞

j=1 (θλ)j/(Πj
k=1 (r+k))] 

– [1 + Σ∞
j=1λ

j/(Πj
k=1 (r+k))]} and θ >1.

From (2.4) together with (3.1) it is clear that 
ARL ≈ λ/P (Zθλ ≥ r ). Hence as a function of θ, the 
ratio k from Lemma 3.1 is just the factor by which 
ARL is reduced when going from 1 to some θ > 1. 
Since k increases in λ, the reduction for given θ 
is maximized by choosing λ as small as possible. 
As mentioned before, the binomial charts employ 
λ such that P (Zλ ≥ r ) = λα. This value is indeed 
smaller, and thus better, than the negative binomial 
λ, which solves P (Zλ ≥ r ) = rα. In fact, the two charts 
can be seen as the opposite ends of an interval: in 
general let l, such that n = nl ≤ l ≤ EXr,p = r/p, be the 
number of Di between two consecutive inspection 

moments, then we need P (Xr,p ≤ nl) = lpα in order 
to keep satisfying the requirement that ARL = 1/α. 
In analogy to (2.4) and (2.5), this leads to 
nl = λl/p, where λl solves P (Zλl ≥ r ) = lpα and thus 
λBin ≤ λl ≤ λNB.

To illustrate matters, we consider the following 
continuation of Example 2.1:

Example 3.1. Again α = 0.005, and thus 
the in-control ARL = 200 for all charts involved. 
Suppose we focus on detecting a possible doubling 
of the value of p, i.e. on the case θ = 2. For r = 5 we 
then have from Table 2 that ARL = 15.0. As λ = 1.11 
for this case, this means on average 13.5 inspection 
steps before stopping. In comparison, the negative 
binomial chart for r = 5 has ARL = 21.9 (see table 2 
from Albers (2010)), which is indeed larger than the 
15.0 obtained here. On the other hand, there on 
average only 4 to 5 inspection steps are needed, 
as the step size is r = 5, rather than λ = 1.11. To 
put matters in perspective, do note that the simple 
geometric chart has ARL ≈ 1/(θα), which still is as 
high as 100 here.

After showing that increasing r is very 
worthwhile, it remains to provide further guidance 
on how to actually choose r. This issue has been 
studied in some detail in Albers (2010) for the 
negative binomial case. Fortunately it turns out that 
the conclusions obtained there continue to hold for 
the present situation. Hence we just quote the result 
here: a simple rule of thumb for finding r opt, the 
value of r for which ARL is approximately minimal 
in the region of interest. For given α and θ, let

( ){ }0 01 2 6 2 1 4 3optr / ( . ) . –= α θ + + θ 	 (3.3)

Hence e.g. α = 0.01 gives r opt= 4 for θ = 4 and 
r opt=5 for θ = 3, while for α = 0.005 we have r opt = 5 
for θ = 4 (cf. Table 2). For practical application, it 
seems sensible to actually use a truncated version 
like min(r opt,6). One reason is that it may feel 

Table 2. The exact ARL from (3.1) for various α, r and θ.

a/r
θ = 3/2 θ = 2

2 3 4 5 6 2 3 4 5 6

0.001 445 305 223 173 140 250 133 79.9 54.0 39.9
0.005 89.2 63.4 49.4 41.0 35.5 50.3 28.6 19.5 15.0 12.6
0.01 44.7 32.7 26.4 22.8 20.6 25.3 15.2 11.2 9.28 8.38

a/r
θ = 3 θ = 4

2 3 4 5 6 2 3 4 5 6

0.001 111 41.6 20.1 12.2 8.70 62.6 18.6 8.09 4.89 3.72
0.005 22.4 9.72 5.94 4.60 4.14 12.7 4.68 2.87 2.44 2.51
0.01 11.4 5.49 3.87 3.42 3.47 6.50 2.81 2.10 2.13 2.50
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awkward in practice to apply too large r, since this 
excludes the possibility to stop really quickly if θ is 
evidently very large after all. However, note that this 
effect is less pronounced here than in the negative 
binomial case. In the latter, the minimum is r, while 
for the binomial case it is λ. The second reason is 
that most of the gain in ARL reduction compared 
to the geometric chart, has already been realized for 
an r like 6. To avoid repetition, we refer to Albers 
(2010), Example 3.3 for illustration of this point.

4. The estimated chart

The estimation step for the binomial case 
closely resembles the one for the negative binomial 
situation. Hence we shall be very brief here; for 
more details, again consult Albers (2010). Often p 
will be unknown in practice and a Phase I sample 
has to precede the actual monitoring. To achieve 
fairness of comparison with respect to estimation as 
well, no r should be involved and we simply have m 
geometric r.v.’s X1,p, or equivalently a single negative 
binomial r.v. Xm,p (cf.(2.1)). Let X = m-1 Σm

i=1Xi, then 
EX = 1/p, var(X) = (1-p)/(mp2) and the unknown p 
can be estimated by p̂  = 1/X. Through (2.3) and 
(2.5), this immediately produces for n the estimate 

r ˆ ˆn̂ n , p / p X= ≈ λ = λ , where still λ is such that 
P(Zλ ≥  r) = λα. Likewise, through (2.7) we obtain 
ˆ ˆñ / p X= λ = λ  . Now the chart can be applied as 
before: following Phase I, after each batch of ñ̂  (or 
n̂ ) Di’s, we stop if at least r failures have occurred; 
otherwise the next batch is considered.

Just as in Albers (2010), it remains to study 
the impact of the estimation step. Performance 
characteristics like FAR and ARL have now become 
random. We e.g. have

= = ≤ |r pP X^ ^
,F A R FAR( X)  ( n X) 	 (4.1)

and likewise ( )ARL ARLˆ X= . Consequently, no 
unique criterion exists to appraise relative errors 
such as W = {FÂR – λα}/(λα). The main candidates 
are the bias EW and the exceedance probability 
P (FÂR > λα(1+ε)) = P (W > ε), for some small ε > 0. 
Incidentally, note that this latter criterion essentially 
also covers the exceedance probability for ARLˆ , as 
P (ARLˆ  < (1-ε)/α) = P ((ARLˆ  - 1/α)/(1/α) < - ε) 
= P (W > ε ) with ε  = ε/(1-ε) ≈ ε.

The idea is as follows: from (2.4) and (4.1) 
we observe that ( )≈ ≥n̂ pFÂR P Z r | X . Now  
n̂p = λ(1+U ), with U = p/ p̂  -1. As U has E(U) = 0 
and var(U) = (1-p)/m ≈ 1/m, expansion in powers 
of U will give the desired results on W. To be 
more precise, following Albers (2010), we obtain 

(cf.  Lemma 4.1) that to first approximation the 
relative bias of FÂR equals

1 2EW r(r – – ) / ( m)   = γ λ 	 (4.2)

where λ is such P (Zλ ≥ r ) =λα and γ = P (Zλ = r )/ 
P (Zλ ≥ r ) satisfies 1-λ/(r+1) < γ < 1 (cf. Klar (2000)). 
If desired, this bias can be removed by using the 
slightly more strict n̂

c = n̂ (1-c) = λX(1-c ), with 
(cf. Lemma 4.2)

1 2c (r– – )/( m)= λ 	 (4.3)

As concerns the exceedance probability, it 
can be shown (cf. Lemma 4.3) that, again to first 
approximation,

( ) ( )1  ½P W – ( m / r )> ε = Φ ε γ 	 (4.4) 

where Φ is the standard normal d.f.. If desired, 
correction is possible here as well. Specifically, the 
probability in (4.4) can be reduced to any small 
value β > 0 by choosing c in n̂c this time as 

( )–½c m u – / rβ= ε γ 	 (4.5)

where uβ satisfies 1 - Φ(uβ) = β. Evidently, both 
c from (4.3) and from (4.5) tend to 0 as the size 
m of the Phase I sample increases. However, the 
exceedance probability correction from (4.5), being 
of order m-½, will typically be larger than the order 
m -1 correction for bias, as is intuitively clear. To 
avoid repetition, we once more refer to Albers 
(2010) for further comments and examples.

5. Conclusions and summary

As indicated in the Introduction, the choice 
between negative binomial charts and binomial 
ones is less straightforward than it may seem 
at first sight. Nevertheless, in section 2 it was 
demonstrated that the technicalities involved are 
quite similar. This enabled us to be quite brief for 
the binomial case, as the results for the negative 
binomial charts were readily available from Albers 
(2010). In particular, it was noted that for given α a 
particular n could be used either in a binomial chart 
by looking whether at least r failures had resulted 
at this point, or alternatively in a negative binomial 
chart by waiting for r-1 failures and seeing whether 
these occurred within n steps. Hence it was hardly 
surprising that binomial charts, just like negative 
binomial ones, benefit from using a value of r 
larger than 1. In fact, the same rule of thumb as in 
Albers (2010) can be applied to find the optimal r 
for given α and θ. The main conclusion, however, 
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was that the detection power of the binomial charts 
is consistently better than that of the negative 
binomial ones. Especially for larger α and r the 
relative difference is considerable. A proof for this 
phenomenon is provided in Lemma 3.2. Hence 
binomial charts form an attractive alternative to the 
slightly more simple negative binomial choice. 

To conclude the paper, for convenience we 
summarize the application of the binomial chart as 
discussed in the previous sections:

•	 Select a desired in-control ARL = 1/α and a degree 
of change θ during OoC that should be optimally 
protected against. 

•	 Apply rule of thumb (3.3) to obtain the best r 
(typically truncate at 6 in practice).

•	 Find λ such that P (Zλ ≥ r ) = λα, where Zλ is 
Poisson, or simply use its approximation λ  from 
(2.6).

•	 If desired, check whether the out-of-control 
behavior is satisfactory through ARL from (3.1) or 
its approximation ARL  from (3.2).

•	 For known p, either use n = λ/p (cf.(2.5)), or simply 
ñ = λ /p (cf. (2.7)). 

•	 If p is unknown, first wait till m failures have 
occurred. Take e.g. m = 100, or use section 4 (e.g. 
see (4.2) or (4.4)) to make a more elaborate choice.

•	 From this Phase I sample, obtain 1p̂ / X,=  where 
1

1
m

iiX m X−
== ∑ , and use n̂ = λ/p̂, or simply 

ˆ ˆñ / p X= λ = λ .

•	Now monitoring starts: a series of batches is 
inspected, each consisting of n (or ñ, n̂ , ñ̂ ) items.

•	Give a signal as soon as a batch is encountered 
which contains at least r defectives.
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Melhorias em gráficos de controle por atributos  
para processos de alta qualidade

Resumo

Geralmente gráficos de controle binomial negativa são utilizados em controle de processo por atributos cuja 
probabilidade de falha p é relativamente baixa. A decisão de parar ou continuar a produção é feita cada vez que 
ocorrer r > 1 falhas. Determinar o valor ótimo de r para detectar um determinado aumento de p, requer um 
alinhamento do gráfico em termos de comportamento do processo sob controle. Neste artigo, gráficos de controle 
binomial estão sujeitos às mesmas exigências. Estudo subsequente revela que este gráfico apresenta resultados 
um tanto atraentes sob vários aspectos, como por exemplo, seu poder de detecção. Uma versão do mesmo gráfico 
empregando estimadores de p também é apresentada no caso de p ser desconhecido.
Palavras-chave
Controle estatístico de processo. Monitoramento de indicadores de saúde. Gráfico controle geométrico. Estimação 
de parâmetros.
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Appendix 1. To facilitate independent reading, below we quote Lemmas 2.1 and 3.1 for the negative binomial chart from 
Albers (2010).

Lemma 2.1. Let αr = (r!rα)1/r, then λ such that P (Zλ ≥ r ) = rα can be approximated for p ≤ 0.01, r ≤ 5 and α ≤ 0.01 by

( ) ( ) ( ) ( ){ }λ = α + ζ ζ = α + + α + + +221 with 1 3 5 1 2
~

r r r r r, / (r ) ½ r / r r 				    (A.1) 

Proof. From Klar (2000) we have that for k ≥ 1 and r > λ-1 

( ){ } ( ) ( )11 1 k k r k
j j r   – / r j { P Z j } / P Z r+ −
= = λ λλ Π + < Σ = ≥ <1 					     (A.2) 

Hence for k = 3, this ratio lies between {1 – λ3/Π3
j=1(r+j )} and 1. Since we aim at situations λ = ηr with η small, this 

typically means that the ratio from (A.2) is sufficiently close to 1 to allow us to solve

) ( )( ){ }21 1 1 2– re / (r / r r ] / r ! rλλ + λ + + λ + + = α 						      (A.3)

rather than P (Zλ ≥ r ) = rα. In addition note that, as P (Zλ ≥ r ) is increasing in λ, the solution from (A.3) will provide an 
upper bound for the true λ. The second step involves expanding exp(-λ): as |exp(-λ) – (1-λ+½λ2)| ≤ λ3/6 for λ > 0, the 
error involved here will also be acceptable for small λ. Hence (A.3) leads to e.g. the result that to first order λr/r! = rα and 
thus to λ = αr to first order; using expansion to third order w.r.t λ and inverting the result w.r.t αr produces (A.1) in a 
straightforward manner.

Lemma 3.1. The exact ARL = ARLr,θ = r/Fr,θp (nr,p) can be approximated for p ≤ 0.01, r ≤ 5, α ≤ 0.01 and 3/2 ≤ θ ≤ 4 by

( ) ( ){ }11 1 1 1
~ ~ r–

r , r r r rA R L A R L r / – exp(– ) ... – ) / (r – !θ
 = = θα + θα + + θα θα ζ  

			   (A.4)

with αr and ζ as in (A.1).

Proof. From Lemma 2.1 it follows that in ARL ≈ r/P (Zθλ ≥ r ) we can replace λ by λ  = αr(1 + ζ) from (A.1). Since 
dP (Zμ ≥ r )/dμ = P(Zμ = r-1), we have that P(Zμ(1+ζ) ≥ r ) to first order equals P (Zμ ≥ r ) + ζμ P(Zμ = r-1) = 1 – exp(-μ)[1 + μ + ... 
+ μ r-1(1 – ζμ)/(r-1)!]. Application of this result with μ = θαr immediately produces (A.4).
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